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Abstract 

Sleep is a non-negotiable requirement for a happy, healthy life. In the last 70 years, our 

understanding of sleep has grown exponentially. However, in our busy society, sleep is often 

overlooked and undervalued. This is surprising given that sleep disorders and sleep dysregulation 

have been linked to multiple systemic and brain-based diseases, including cardiovascular disease, 

type 2 diabetes, dementia, and major depressive disorder. Additionally, sleep disorders and sleep 

characteristics (e.g. sleep duration) have been linked to higher rates of mortality. Despite the 

emerging evidence of a sleep-mortality association, the mechanisms underlying the relationship 

are not well understood. Little is known about how the proportion of time spent in each sleep 

stage relate to timing or cause of death. 

This dissertation is an in-depth investigation of the relationship between rapid eye movement 

(REM) sleep and risk of mortality. Specific aim one combines traditional and machine learning 

analytic approaches to evaluate whether lower levels of REM sleep would be associated with an 

increased rate of mortality.  

Sleep is comprised of multiple sleep stages that by nature are highly correlated. Therefore, it is 

necessary to tease apart whether another sleep stage could be a better predictor of mortality. Aim 

two used supervised machine learning to rank the four sleep stages from most to least predictive 

in context of one another. 

The hypotheses were increased mortality rates would be associated with lower quantities of REM 

sleep and that compared to other sleep stages, REM would be the best predictor of mortality.  

Specific aim three was to evaluate the validity, consistency, and generalizability of the findings. 

to do this, the final models were validated in two independent cohorts and the results from all 

three cohorts were combined in a meta-analysis.  

Materials and Methods 

Three longitudinal, population-based cohorts were used in this project. The Osteoporotic 

Fractures in Men (MrOS) sample included 2,675 older men (mean age 76.3 years ± 5.5 years) 

recruited from 2003 to 2005 and followed for a median of 12.1 years. The Wisconsin Sleep 

Cohort (WSC) started in 1988 and followed 1,386 participants (45.7% women, mean age 51.5 

years ± 8.5) for a median of 20.8 years. The Sleep Heart Health Study (SHHS) was comprised of 

5,550 participants (52.4% women, mean age 63.0 years ± 11.2) recruited between 1995 and 1998 

and monitored for a median of 11.9 years. 
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The exposure was percent of total sleep time spent in REM sleep and was evaluated at baseline 

using polysomnography. The main outcomes included all-cause and cause-specific 

(cardiovascular, cancer, other) mortality confirmed with death certificates. 

Cox proportional hazards regression models were used to evaluate the association between 

percent REM and mortality. The first model contained a core set of covariates selected a priori 

based on existing literature and clinical experience. Additional covariates commonly associated 

with sleep architecture were evaluated using 6-fold cross-validation with a forward step-wise 

feature selection algorithm to obtain the best candidates for the final multivariate regression 

models. A threshold effect was suspected based on Kaplan-Meier curves, so separate models 

were run with percent REM as a binary variable using 15% as the cut-point.  

Conditional inference survival tree and random survival forest analyses were conducted to 

identify which sleep stage(s) were driving the significance of the finding and to evaluate relevant 

cut-points. Several sensitivity analyses were completed to rule out alternative explanations for the 

findings. The findings were replicated using data from the Wisconsin Sleep Cohort (WSC) and 

Sleep Heart Health Study (SHHS). A meta-analysis pooled and weighted the results from all three 

studies to provide a global quantification of the hazard ratio. 

Results  

MrOS participants had a 13% higher mortality rate for every 5% reduction in REM sleep (percent 

REM standard deviation = 6.6%) after adjusting for multiple demographic, sleep, and health 

covariates including study site, age at sleep visit, race, education, medication use, smoking status, 

caffeine intake, respiratory disturbance index, and actigraphy measures (age adjusted hazard ratio 

[HR] = 1.12, fully adjusted HR = 1.13, 95% CI, 1.08–1.19). The association was also present for 

cardiovascular disease-related mortality (CVD) (HR = 1.18, 95% CI, 1.09–1.28), cancer related 

mortality (HR = 1.14, 95% CI, 1.03–1.26), and non-cardiovascular, non-cancer related mortality 

(HR = 1.19, 95% CI, 1.10–1.28). Individuals with <15% REM had a higher mortality rate relative 

to individuals with ≥15% for each mortality outcome with odds ratios ranging from 1.20 to 1.35. 

The random forest model identified REM as the most important sleep stage for predicting 

survival. 

In the WSC, the effect size for 5% reduction in REM on risk of all-cause mortality was similar 

despite the younger age, inclusion of women, and longer follow-up period (HR = 1.17, 95% CI, 

1.03–1.34). When stratified by gender, lower percent REM was associated with all-cause 

mortality in women (HR = 1.34, 95% CI, 1.07–1.68) but was not statistically significant in men 
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(HR = 1.09, 95% CI, 0.92–1.30). In the SHHS results were consistent with the other cohorts with 

a 13% increase in all-cause mortality rate for every 5% reduction in REM (HR = 1.13, 95% CI, 

1.07–1.18) and a 7% increase in cardiovascular mortality rate (HR = 1.07, 95% CI, 0.97–1.17). 

Unlike WSC, when stratified by gender, the hazard ratio was higher in men (HR = 1.16, 95% CI, 

1.08–1.17) than women (HR = 1.09, 95% CI, 1.02–1.17). Meta-analysis of the three cohorts 

yielded an overall hazard ratio of 1.13 (95% CI 1.10–1.17) for all-cause mortality and 1.10 (95% 

CI 1.03–1.16) for cardiovascular mortality.  

Conclusion and Relevance 

There was a robust association between lower levels of REM sleep and mortality in three 

independent cohorts, which persisted across different causes of death and multiple sensitivity 

analyses. Given the complex underlying biological functions, further studies are required to 

understand whether the relationship is causal. Accelerated brain aging may result in reduced 

REM sleep, making it a disease, frailty or biologic aging marker rather than a direct mortality risk 

factor. Mechanistic studies are needed and strategies to preserve REM may influence clinical 

therapies and reduce mortality risk, particularly for adults with <15% REM.  
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Introduction 

History of the Sleep Field 

Humans spend nearly a third of their lives asleep and sleep is fundamental to animal life, yet the 

science of sleep is a relatively new discipline and the function of sleep remains largely unknown1. 

The first textbook on sleep was published in 1913 when the French scientist W. H. Howell 

reported on the physiology of sleep in “Le probleme physiologique du sommeil2.” Shortly after, 

Dr. Nathanial Kleitman began studying the regulation of sleep and wake at the University of 

Chicago in the 1920s. At that time, most people assumed that sleep was a passive activity where 

both the body and brain were dormant. 

That belief changed in the 1950’s when Eugene Aserinsky, Kleitman’s student, identified a 

marked increase in frequency and speed of eye movements during periods in the night. Today that 

activity is known as rapid eye movements (REM). William C. Dement (see Figure 1a), another 

student of Kleitman, was the first to make the connection between REM and dreaming. 

Throughout the 1950s, Dement studied and described sleep patterns in human beings and 

documented the occurrence of REM sleep in newborn babies and cats (one of the first animal 

models in sleep)3. Michel Jouvet recognized that the brainwaves during REM sleep were similar 

to wake; classifying REM as an independent state of alertness he termed “paradoxical sleep.” In 

the early 1960’s Jouvet mapped out the brain structures that generate REM at the University 

Claude Bernard in Lyon4. 

In 1963, Dement left Chicago and joined the Psychiatry Department at Stanford University where 

he continued to develop and publicize the new field of sleep science. He founded the Stanford 

Narcolepsy Clinic to study and provide clinical care to individuals with narcolepsy, a sleep 

disordered marked by disordered REM sleep that we now know affects 0.05% of the population 

in the US5. Together with Dr. Christian Guilleminault, Dement founded the first sleep disorders 

clinic at Stanford in the 1970s and used all-night polysomnography (PSG) to objectively examine 

and treat patients with sleep-related complaints. Numerous clinical advances in sleep have taken 

place at Stanford University to support patient care. Dr. Mary Carskadon invented the Multiple 

Sleep Latency Test to formally diagnose narcolepsy and idiopathic hypersomnia6. Dr. Rachel 

Manber launched of the first group therapy program for insomnia in 1999.  

In addition, many groundbreaking scientific advances and discoveries took place at Stanford, 

many by Dr. Emmanuel Mignot (see Figure 1b) whose research focuses on the neurobiology, 

genetics, and immunology of narcolepsy. Mignot used positional cloning to identify an autosomal 
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recessive mutation responsible for narcolepsy (hypocretin receptor 2) in the canine model7. He 

also discovered that narcolepsy in humans is caused by an immune-mediated destruction of 

hypocretin/orexin neurons in the hypothalamus8-10. In addition, he isolated the gene causing 

DNMT1, the methylopathy Autosomal Dominant Cerebellar Ataxia, Deafness and Narcolepsy 

(ADCA-DN)11 and identified a genetic marker for sleep apnea, which is also associated with 

Alzheimer’s and cardiovascular diseases12. 

Overview of Sleep Science and Medicine 

Today, sleep is a rapidly growing, international field that is separated into two main disciplines: 

sleep science and sleep medicine. The science of sleep can be broadly divided into basic and 

clinical research. Basic research includes the study of genetics, proteomics, immunology, 

neurobiology, neurophysiology, pharmacology, animal models (from drosophila and zebra fish to 

primates), and countless other sub-specialties. Clinical research includes observational studies 

that systematically collect data on the causes, consequences, and natural progression of sleep 

disorders. It also covers clinical trials used to gauge the effectiveness, tolerability, and safety of 

medications or medical devices in the treatment of sleep disorders. 

Sleep medicine encompasses the diagnosis and treatment of sleep disorders. There are more than 

800 different sleep disorders that are broken down into eight main categories: (a) insomnias, (b) 

sleep-related breathing disorders, (c) hypersomnias of central origin, (d) circadian rhythm 

disorders, (e) parasomnias, (f) sleep-related movement disorders, (g) isolated symptoms, 

apparently normal variants, and unresolved issues, (h) others13. Common sleep disorders include 

obstructive sleep apnea, insomnia, restless legs syndrome, shift work, and narcolepsy. 

One major issue in the field of sleep medicine is the inability to effectively scale the sleep care 

model. Sleep disorders and sleep dysregulation are a global issue with over 100 million affected 

in the US alone14. Impaired sleep is a substantial contributor to contributing to multisystemic 

medical consequences15 including cardiovascular disease (arrhythmia, hypertension, stroke)16,17, 

metabolic disorders (diabetes, obesity)18, psychiatric conditions (depression, addictive behaviors, 

suicide)19,20, impaired cognition (Alzheimer's, dementia)21,22, quality of life outcomes (daytime 

sleepiness, irritability, concentration)23, and all-cause mortality16. The field of sleep medicine is 

simply too small and ill equipped to support the sheer volume of people suffering with sleep 

issues. 

The current clinical model starts with a referral for a consultation appointment with a sleep 

clinician. Many clinics have a long waiting list for these visits. After collecting information about 
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the patient’s clinical and sleep history, usually the physician will order an overnight sleep study, 

called a polysomnogram (PSG), to monitors brain waves, heart rate, leg movements, and 

breathing during sleep. For most patients, this results in yet another long wait, sometimes several 

months. 

The night of their study, the patient arrives in the early evening and spends the next two to three 

hours completing paperwork and having wired sensors applied from head to toe by a trained 

polysomnographic technologist. Most in-lab PSGs collect between 16 and 25 channels of digital 

information throughout the night to acquire a comprehensive assessment of the individual’s sleep. 

standard PSG channels includes: electroencephalogram (EEG), electrooculogram (EEG), 

electromyogram (EMG) of the submentalis muscle as well as the anterior tibialis muscle of each 

leg, electrocardiogram (ECG), snoring, breathing effort using inductance plethysmography 

summation systems, both oral and nasal airflow, as well oxygen hemoglobin. A 2-minute PSG 

recording is presented in Figure 2. 

The night is divided into five discrete stages: wake, non-REM stage 1 (N1), stage 2 (N2) stage 3 

(N3), and REM. Currently, a trained technician manually assigns a sleep stage to every 30-second 

epoch of the 8-hour study through visual inspection. The stage is selected based on a series of 

rules originally published in by Rechtschaffen & Kales in 196824. Updated consensus rules are 

regularly published by the American Academy of Sleep Medicine8,9. It takes about 2 hours for a 

technologist to score an 8-hour recording. 

This manual approach has multiple problems. It is time consuming, expensive, inconsistent, and 

subjective. In addition, the 30-second window (epoch) was chosen before digital recording, when 

sleep studies were collected using paper and ink. Thirty seconds of data was recorded on each 

page, so it was convenient when flipping through the paper records. However, biologically it does 

not make sense to assign a single stage for such a long period because it is extremely common to 

have two or more stages present in a single epoch. Therefore, the technician has to make a 

judgement call about which sleep stage represents the majority of the epoch. A study performed 

by Rosenberg and colleagues20 found inter-scorer reliability for sleep stage scoring to be 82.6% 

on average, a result consistently found by other teams21–24. N1 and N3 are particularly 

problematic with agreements as low as 63% and 67%, which significantly reduce their clinical 

usefulness20. 

In the US, there are only 2,600 American Academy of Sleep Medicine accredited sleep disorders 

centers. These clinics are supported by 6,000 board-certified sleep medicine physicians25 and 

20,000 Registered Polysomnographic Technologists26 and perform 1-2 million sleep studies each 
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year. This is simply not enough to provide adequate care to those in need. As a result, the field of 

sleep medicine is being forced to change to accommodate the growing need for care. 

Advances in Sleep Medicine 

The landscape of sleep medicine has been able to change rapidly due to the ongoing 

advancements in technology, machine learning, data storage, and wearable devices. While it may 

be tempting to replace old systems with innovative approaches, care must be taken to ensure 

critical knowledge is carried forward, particularly because sleep is a relatively new discipline. A 

more effective strategy is to combine clinical knowledge with advances in machine learning and 

statistical methods to carry the field forward while breaking the bottleneck of care created by 

traditional sleep center workflows. 

The analysis of overnight PSGs is an obvious area that can be transformed with the thoughtful 

application of machine learning and artificial neural networks. PSGs are an incredibly rich 

phenotype that have been underutilized due to the size and complexity of the studies. Currently, 

eight hours of biological data are condensed into roughly a dozen summary variables, such as 

how long it took to fall asleep (sleep latency), total sleep time, and number of abnormal breathing 

events per hour of sleep (apnea hypopnea index). However, the historical limitations around 

studying PSGs are being eliminated as securely transferring and storing large files becomes 

cheaper and easier. Additionally, data is now being shared through mechanisms like the National 

Sleep Research Resource27 (supported by the National Heart, Lung, and Blood Institute) that 

offers free access to de-identified PSGs and clinical data elements from multiple well-

characterized research cohorts and clinical trials28. As these constraints related to access and 

computational power are reduced, automated scoring algorithms have become a viable solution to 

change how PSGs are analyzed. Automation will reduce cost and improve the reproducibility of 

the data used to make clinical decisions29. Additionally, a deep learning, quantitative analysis of 

sleep will lead to the development of new biomarkers and diagnostic criteria30. 

Over the last 30 years, there have been numerous attempts to create software to assist sleep 

scoring31, but the resulting systems have not been well received by the sleep community because 

they are cumbersome and expensive with variable utility. The Academic Alliance for Sleep 

Research (AASR) conducted a study to investigate the inter-scorer variability of computer-

assisted manual PSG scoring between and across sites. The AASR was a consortium of academic 

sleep centers established to perform multicenter research studies. For this study, ten experienced 

scoring techs from five institutions scored the same 70 studies using the American Academy of 

Sleep Medicine standards for scoring sleep stages, arousals, and apneas32. Hypopneas were scored 
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using three different criteria: recommended, alternate, and research (Chicago)32. The intraclass 

correlation coefficients (ICC) ranged considerably depending on the metric evaluated. The ICCs 

across sites ranged from 0.402 (95% CI, 0.352–0.452) for arousals during REM sleep to 0.870 

(95% CI, 0.847–0.889) for total sleep time. Agreement across techs within-site was higher but 

had more variance with ICCs ranging from 0.557 (95% CI, 0.267–0.827) for arousals during 

REM sleep to 0.892 (95% CI, 0.779–0.980) for total sleep time33. What makes this project 

particularly noteworthy is that the same studies were analyzed using an automatic scoring 

software developed by Magdy Younes at YST Limited (Winnipeg, Canada). Overall, the 

automated scoring results were comparable to those obtained by experienced technologists. The 

ICC for automatic versus average manual scoring for arousals during REM sleep was 0.39 (95% 

CI, 0.02–0.63) and for total sleep time the ICC was 0.87 (95%, CI 0.79–0.91)29. 

It is not surprising that software created with the goal of mimicking how humans evaluate sleep 

studies has intrinsic limitations given the rules used by humans are fairly arbitrary. Mignot and 

colleagues30 adopted a new strategy by transcending the current rules developed decades ago by a 

consensus of sleep experts. The team explored automated sleep staging from different 

perspectives by applying multiple deep learning algorithms to data from numerous independent 

cohorts, including data scored by multiple technologists. The best model performed better than 

any individual scorer did (Cohen’s kappa of 87.0 ± 4.5% versus consensus) and surpassed the 

performance reported from the Younes software29. 

The Mignot model produces a hynodensity graph, which is a probability distribution of sleep 

stages across the night. This is novel measure is similar to the classic hypnogram (see Figure 2), 

but instead of assigning a single sleep stage to each epoch of sleep, the system provides a 

membership function to each of the sleep stages across the night. This approach breaks the 

dependency on a 30-second epoch to categorize sleep, which does not have a physiological basis. 

It also conveys more information about sleep trends than traditional human scoring. For example, 

there were fundamental differences in the hypnodensity graphs of narcolepsy patients compared 

to other individuals. Specifically, there was a greater than normal overlap between sleep stages. 

Type-1 narcolepsy is an auto-immune disease34 characterized by sleepiness, cataplexy (episodes 

of muscle weakness triggered by emotions), poor nocturnal sleep (insomnia) and symptoms of 

dissociated REM sleep. This dissociation is demonstrated when REM sleep is intermingled with 

wakefulness, producing reports of dreams that interrupt wakefulness and seem real (hypnagogic 

hallucinations), or episodes where the sleeper is awake but paralyzed (sleep paralysis)35-39. The 

hypnodenisty graph made this dissociation and mixing of sleep stages very apparent. When 
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combined with PSG features identified from prior work to aid in the diagnosis of narcolepsy40, 

the Mignot model achieved a sensitivity of 93% and a specificity of 91% in the replication 

sample.  

Zhang and colleagues41 also used deep neural networks to build a multi-model integration scoring 

strategy with multiple signal channels as input. The network’s performance was comparable to 

humans with an average accuracy of 0.8181 and Cohen’s Kappa of 0.7276. Their approach was 

less successful because the performance of the model was significantly impacted by arousals. 

This is a serious problem as arousals are a common phenomenon in sleep clinic patients. 

Machine learning has also proved useful in the characterization of sleep clinic patients. The 

ability to better articulate traits of clinic patients is a major breakthrough as the heterogeneity of 

patients with any given sleep disorder is still largely unknown. As a result, it is nearly impossible 

for physicians to develop a thoughtful treatment plan that is tailored to a patient’s needs. Recently 

there has been considerable expansion in this area, particularly with respect to obstructive sleep 

apnea (OSA). Predicting who will be adherent to positive airway pressure (PAP) has proven to be 

an incredibly complex task. Patient characteristics, disease characteristics, initial CPAP exposure 

factors, and psychosocial factors have all been extensively examined as possible predictors with 

little success42. In general, patient reported symptoms and adherence to treatment are poorly 

correlated with disease severity in both adults42 and children43,44. Dr. Allan Pack and colleagues 

tackled this problem by using unsupervised clustering on self-reported symptoms at diagnosis to 

identify relevant clinical subtypes of OSA related to (a) insomnia/disturbed sleep, (b) minimal 

symptoms, and (c) excessive sleepiness. These subtypes were first identified using the Icelandic 

Sleep Apnea Cohort45. They have now been validated in several other independent cohorts 

including: the Korean Genomic Cohort46, the Sleep Apnea Global Interdisciplinary Consortium 

(SAGIC)47 and the Sleep Heart Health Study (SHHS)48. This work led to the discovery that the 

cardiovascular risk of OSA appears to be driven by the subset of patients in the excessively 

sleepy subtype49. From a clinical perspective, this type of breakthrough is critical because now we 

know that treatment of these sub-groups should be addressed differently and there needs to a 

major focus on patients who are excessively sleepy. 

The idea that self-reported symptoms can guide clinical therapy is far from novel. In sleep, there 

are hundreds of validated sleep surveys, but most focus on a single disorder and strive for brevity. 

However, sleep and sleep disorders are far too complex for tunnel vision to be an effective 

strategy. As a result, these measures fail to gain enough context to provide a useful diagnosis or 

treatment plan. The Alliance Sleep Questionnaire (ASQ) changes that paradigm. The ASQ is an 



7 

innovative, on-line questionnaire designed to address the multifaceted nature of sleep and was 

originally created by the same Academic Alliance for Sleep Research (AASR) that conducted the 

sleep scoring study described above. Stanford University led the multidisciplinary team of 

domain experts from Harvard University, University of Pennsylvania, University of Wisconsin-

Madison, and Stanford University to design the questionnaire’s content using novel questions and 

validated measures50. The questionnaire uses complex branching logic to lead users through a 

comprehensive set of questions covering medical history, current medications, previous 

treatments for sleep disorders, sleep habits/schedule, daytime fatigue, as well as symptoms of 

insomnia, obstructive sleep apnea (OSA), restless legs syndrome (RLS), narcolepsy, and other 

sleep related disorders. 

The ASQ has been standard of care since 2012 at the Stanford Sleep Medicine Center51,52. The 

questionnaire takes a median of 35 minutes for sleep disorder patients to complete, and 20 

minutes for a young volunteer without sleep issues. The completion rate for clinical patients is 

88.4%51. The ASQ’s ability to identify key disorders has been evaluated using clinical diagnosis 

as the gold standard. Type 1 narcolepsy and RLS were evaluated first on a small scale using 

simple rules to classify patients based on responses to the corresponding module. The type 1 

narcolepsy algorithm had a sensitivity of 80.0% and a specificity of 99.0%53. The RLS algorithm 

had a sensitivity of 68.9% and a specificity of 91.2%54. More advanced techniques were used to 

evaluate sleep apnea and insomnia. Instead of restricting the model to the validated measure used 

in the questionnaire, the algorithms contained variables from other ASQ modules. In both cases, 

the ASQ algorithm had better sensitivity and specificity compared to the validated measure. The 

ASQ’s OSA model had a sensitivity and specificity of 95.5% and 43.3% compared to the multi-

variate apnea predictor (MAP)’s55 sensitivity of 95.1% and specificity of 38.4%56. The ASQ 

insomnia model had a sensitivity of 75.1% and a specificity of 73.0% compared to the insomnia 

severity index (ISI)’s57 sensitivity of 71.5%, and specificity of 62.0%58.  

To date more than 15,000 new and returning patients have taken the ASQ before their 

consultation or sleep study appointment. Combining this volume of standardized subjective data 

with the final diagnosis could be an incredibly valuable resource for the field of sleep if widely 

shared. However, extracting a definitive diagnosis from the electronic health record (EHR) is an 

extremely complex task because the data is disorganized and often embedded in clinical notes. 

Cleveland Clinic was an early adopter of the EHR. In 1995, they began transitioning to Epic, an 

EHR software system. By 2018, less than 5% of their EHR data are codified variables59 which 

speaks to the complexity of this data. To provide a clean dataset for statistical analysis, the data 
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must be pre-processed using numerous statistical techniques to parse, map and validate the raw 

EHR data. The Observational Health Data Sciences and Informatics (OHDSI)60 group is using 

large-scale analytics to develop an open-sourced pipelines to map data to a detailed ontology. The 

Observational Medical Outcomes Partnership (OMOP) common data model provides resources to 

convert a wide variety of datasets into a format that can shared across institutions. This 

standardization of EHR data is a critical step in evaluating generalizability of findings. 

Researchers can access EHR data from standard encounter tables as well as clinical notes, use the 

provided natural language processing tools to engineer features needed to answer scientific 

questions. This common data model also provides a mechanism to validate findings with data 

from other institutions. Although working with EHR data is still a complex problem that requires 

a high level of knowledge and expertise, these tools will revolutionize how health outcomes are 

monitored. 

When taken together, these types of advances are coming together to create new opportunities in 

sleep medicine for large-scale analysis of real-world data. There have already been noteworthy 

progress to automate and standardize overnight sleep studies. In addition, complex datasets can 

now be assembled using OHDSI and OMOPs to combine EHR and comprehensive subjective 

data from surveys like the Alliance Sleep Questionnaire. These datasets can be posted to the 

National Sleep Research Resource28 for access by researchers interested in building prediction 

models that will result in customized clinical workflows and ultimately improved patient 

outcomes. 

This type of data sharing is critical to combat the replication crisis described by Dr. John 

Ioannidis in 200561. In this controversial paper, Ioannidis explained how most published studies 

are false, with most findings at best accurately reflecting the prevailing bias and at worst incorrect 

interpretations of faulty methodology. The “Reproducibility Project: Psychology” was developed 

in 2011 to evaluate reproducibility of previously published work62. Using a strict protocol63, more 

than 250 scientists from around the world attempted to reproduce 100 key 2008 articles published 

in three leading psychology journals. In the original analyses, 97% of the studies had significant 

results (p < 0.05). However, only 36% of the replication studies had a significant finding 

Correlational tests performed by the team found that replication success was better predicted by 

the strength of original evidence than by characteristics of the analyses performed by either the 

original and replication teams64. 

Now that we know how pervasive the lack of reproducibility is in existing literature, we must set 

a higher standard for future publications. Many journals are now requiring authors share their raw 
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data as part of their publication. Some journals are even providing opportunity to publish datasets 

as a citable scientific publication65. These systemic changes are improving the quality of science 

in multiple ways. Providing an easy mechanism for peers to reproduce findings is setting a new 

level of accountability. In addition, publicly available datasets allow researchers to validate their 

own findings to ensure they are valid before publication. Finally, scientists are able to fill in 

knowledge gaps using existing datasets rather than generating new data, which is both expensive 

and time consuming. 

This dissertation leverages many of the recent advances in science by using a combination of 

traditional and machine learning analytic approaches to answer a scientific question using 

existing data. The finding was replicated in two independent cohorts to prove reproducibility and 

strengthen the validity and generalizability of the results. 

 

Thesis Specific Aims  

The goal of this study was to investigate the relationship between REM sleep and mortality. A 

combination of traditional statistics and machine learning were used to conduct a thorough 

analysis on the association and explore whether another sleep stage could be a better predictor of 

mortality. The hypotheses were: (1) lower quantities of REM sleep would be associated with 

increased mortality rates and (2) compared to other sleep stages, REM would be the best predictor 

of mortality. To evaluate generalizability of the findings, the final models were replicated in two 

independent cohorts. The results from all three cohorts were combined in a meta-analysis.  

The dissertation was separated into the following three aims: 

Specific Aim 1. Examine the relationship between REM sleep and mortality.  

REM sleep has been linked with multiple aspects of mental and physical health66-74. After total 

sleep deprivation, REM is the first sleep stage to rebound75. Additionally, there is evidence of a 

U-shaped relationship between sleep duration and mortality17,76,77 therefore it is logical that a 

reduction in REM would be associated with adverse outcomes. 

Data from the Osteoporotic Fractures in Men (MrOS) Sleep Study78 were used to exhaustively 

evaluate the relationship between REM sleep and mortality. MrOS is an observational, 

longitudinal cohort study that collected baseline sleep data, including overnight polysomnography 

(PSG), on 3,135 community-dwelling men ≥65 years of age between December 2003 and March 

2005. Mortality data were last updated in 2018 and 2,675 men ages met criteria for inclusion in 
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this analysis (mean age 76.3 years ± 5.5 years) and were followed a median of 12.1 years. Crude 

and multi-variable Cox proportional hazards or logistic regression models were used to evaluate 

the effect of a 5% reduction in REM sleep on the rate of mortality. Mortality data were updated in 

2018 and five outcome definitions were used (1) all-cause mortality, (2) cardiovascular mortality, 

(3) cancer mortality, (4) other morality, and (5) longevity (survival > 90 years of age). A 

combination of clinical knowledge and 6-fold cross-validation was used to control for potential 

confounders. Multiple sensitivity analyses were conducted to evaluate whether other factors could 

explain the findings. 

My hypothesis was that lower levels of REM sleep would be associated with an increased rate of 

mortality. 

Specific Aim 2. Identify which sleep stage best predicts mortality.  

Sleep is comprised of multiple sleep stages and by nature are highly correlated. Little is known 

about how the proportion of time spent in each sleep stage relate to timing or cause of death. 

Therefore, the role of each sleep stage was explored using supervised machine learning.  

Random survival forests79,80 were used because they are indifferent to highly correlated data as 

well as outliers and non-linear data. Additionally, due to the ensemble nature of the model 

building, there is minimal risk of overfitting the data. Therefore, it was possible to include all 

sleep stages (non-REM N1, N2, N3, and REM) were included in the models to predict all-cause 

mortality using data from the MrOS study. How much each individual sleep stage contributed to 

the model was evaluated using mean decreased accuracy. This method ranks the sleep stages 

from most to least predictive in context of one another.  

An individual conditional survival inference trees was created to visualize an example tree from 

the random forest model. The algorithm empirically selects the best sleep stages and cut-points to 

divide the sample based on all-cause mortality risk. The data are iteratively split into subsamples 

until only subsamples with different risks remain.  

My hypothesis was that REM sleep would be the most important sleep stage for predicting 

mortality. 

Specific Aim 3. Assess generalizability by replicating findings using external datasets. 

To improve the validity, consistency, and generalizability of the finding, the analyses were 

replicated using two independent, well-characterized sleep cohorts. Although the data available in 
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the replication datasets did not exactly match MrOS multi-variate models, the exposure and 

outcomes were equivalent.  

The Wisconsin Sleep Cohort (WSC) is an ongoing, longitudinal, population-based study of the 

causes, consequences, and natural history of sleep disorders81. Participants were aged 30 to 60 

years when enrolled and 1,546 agreed to participate in a sub-study that objectively measured 

sleep every four years82,83. Of these individuals, 1,386 met criteria for inclusion for analysis 

(45.7% women, mean age 51.5 years ± 8.5) and were followed a median of 20.8 years. Deaths 

were updated through 2018. 

The Sleep Heart Health Study (SHHS) is a prospective cohort study of cardiovascular 

consequences of sleep-disordered breathing84. The population was recruited between 1995 and 

1998 and included 6,441 individuals who were at least 40 years of age and were not being treated 

for sleep-disordered breathing. 5,550 met criteria for inclusion for analysis (52.4% women, mean 

age 63.0 years ± 11.2) and monitored for 11.9 years. Mortality data were last updated in 2011. 

A meta-analysis was performed using the results from all three studies to create a pooled, 

weighted measure of association and quantitatively provide a more precise estimate of effect 

magnitude. 

Impact: The long-term goal of this study is to improve our understanding of the underlying 

biological pathways linking sleep and mortality. Results from this analysis will inform future 

studies examine the importance and function of REM sleep. A better understanding of this 

complex biological process will ultimately inform clinical decisions related to medical and 

pharmacological treatments for at risk populations. 

My overall career goal is to improve the quality of life for millions of people that struggle nightly 

to obtain refreshing, restorative sleep by developing new diagnostic criteria and treatment options 

using the latest computational solutions in phenotype assessment.  
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Background and Literature Review 

Sleep is a regulated, reversible, and recurring loss of consciousness. It is a non-negotiable 

requirement for a happy, healthy life. In our busy society, sleep is often overlooked and 

undervalued even though sleep disorders and sleep dysregulation impact an estimated 50 to 70 

million Americans14. Sleep issues contribute to multisystemic medical consequences including 

cardiovascular issues (arrhythmia, hypertension, stroke)16,17, metabolic disorders (diabetes, 

obesity)18, psychiatric problems (depression, suicide)19,20, impaired cognition (Alzheimer's, 

dementia)21,22, quality of life outcomes (daytime sleepiness, irritability, concentration)23, and all-

cause mortality16. 

During sleep, the central nervous system undergoes several dynamic changes that can be tracked 

and monitored throughout the night. Based on these physiologic changes, sleep is split into two 

main states: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM is 

further broken down into three stages (N1, N2, N3) based on frequency, amplitude and 

morphology of the brain waves. N1 is the transition from wake to sleep, characterized by slowing 

of the brain waves, disappearance of occipital alpha waves, decreased EMG and slow rolling eye 

movements. During N2, the heart rate slows and the body’s core temperature begins to drop. 

Brain waves continue to slow with occasional bursts of faster waves called sleep spindles and 

slower waves called K-complexes. N3 is characterized by a dominance of slow, high amplitude 

brain waves (>30%). These three NREM stages roughly correspond with the depth of sleep, with 

N1 having the lowest arousal threshold (easiest to waken) and N3 the highest (hardest to waken). 

REM sleep is a highly active mental state defined by rapid eye movements, mixed low-voltage, 

low voltage, desynchronized brain waves in the beta or theta range with occasional saw tooth 

patterned brain waves, and loss of muscle tone. REM sleep is associated with dreaming85 and 

homeostatically regulated86. REM is homeostatically regulated and selective REM sleep 

deprivation results in an extended time spent in REM sleep during recovery, known as REM 

rebound86. 

A normal adult spends approximately 5% of the night in N1, 50% in N2, and 20% in N3. Twenty 

to 25% of the night is spent in REM sleep (about 2 hours). A normal sleeper will cycle through 

the four sleep stages in approximately 90 minutes and will have between four to six sleep cycles 

per night with REM propensity highest in the last third of the sleep period87. Sleep architecture is 

the term used to describe sleep’s cyclical pattern as it shifts between the different stages. Figure 3 

is an example of a normal sleeper’s hypnogram, which graphs sleep stages as a function of time. 
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Numerous studies have shown the critical role REM sleep plays with respect to learning88, 

memory89, and mood90. Decreased REM has been linked with poor mental and physical health 

outcomes66-74. NREM sleep is associated with a synchronized EEG pattern in which sleep 

spindles and/or K complexes found in N2 and high-voltage slow wave activity found in N3. 

NREM is thought to maintain cell homeostasis by reducing the number of synaptic connections to 

a basic level91. This process is necessary for normal physical and intellectual performance and 

behavior. 

Many older adults experience sleep issues even though sleep disturbances are not an inherent part 

of the aging process92. While it’s true the natural aging process has been shown to significantly 

change sleep structure and duration in the general population93. Most changes to sleep 

architecture occur during childhood and early adulthood. After that, REM sleep declines ~0.6% 

per decade of life; stabilizing ~75 years of age94. Nevertheless, the increasing prevalence of co-

morbidities and primary sleep disorders associated with aging or polypharmacy factors have been 

found to make older adults more vulnerable to sleep disturbances93,95,96. Sleep complaints, 

whether related to disorders or sleepiness, have important consequences in older adults as these 

symptoms predict poor physical and mental health-related quality of life97. Spending 

proportionally less time in REM and more time in N1 has been associated with lower levels of 

cognitive function98. 

Although sleep is increasingly recognized as an important component of health and well-being, 

maintaining healthy sleep habits is complicated due to the multiple dimensions impacting sleep 

quality including timing, duration, and the absence of sleep disorders99. There are guidelines on 

the recommended amount of sleep needed for optimal health, however sleep needs vary from 

person to person as well as across the lifespan100. As a result, the importance of sleep is regularly 

undervalued. 

Numerous studies have reported on the association between sleep and mortality, most focusing on 

the U-shaped relationship between self-reported sleep duration and mortality17,76,77. Despite 

emerging evidence of a sleep-mortality association, the mechanisms underlying the relationship 

are not well understood. Specifically, we have not identified which component of sleep is the 

most clearly associated with mortality. A recent meta-analysis76 found that sleep duration may 

also be associated with obesity101, hypertension102, and cardiovascular outcomes103, in addition to 

all-cause mortality16 which may provide insight into a possible biological pathway. Alternatively, 

obstructive sleep apnea (OSA) has been linked to cardiovascular outcomes such as early 

mortality, stroke, and cardiovascular disease (CVD)104-107. Therefore, OSA may play a role in the 
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association between sleep duration and mortality. However, there is very limited data showing 

how sleep architecture relates to timing and cause of death108. 

Determining which aspects of sleep contribute to the mortality association has been a challenging 

topic to study given the multi-dimensionality of both sleep and mortality. The goal of this study is 

to use a combination of traditional regression and supervised machine learning techniques to 

evaluate the relationships between sleep architecture and mortality. Given the evidence of the 

importance of REM sleep, I postulated that lower levels of REM would be associated with 

increased rates of mortality. As described in the Introduction, I tested this hypothesis using data 

from the Osteoporotic Fractures in Men Study (MrOS)78. Five mortality outcome definitions were 

evaluated: (1) all-cause mortality, (2) cardiovascular mortality, (3) cancer mortality, and (4) other 

morality (non-cardiovascular and non-cancer related), and (5) longevity (survival > 90 years of 

age). 

One major challenge in designing this study was the sheer volume of potential confounders. I felt 

it was important to carefully consider this problem from a clinical perspective rather than relying 

on machine learning to select the parameters. Therefore, I created a directed acyclic graph 

(DAGs) to identify the presence of confounding and other sources of bias. In epidemiologic 

research, a DAG is a common method used to evaluate the causal relationships between the 

exposure and outcome while accounting for multiple covariates109,110. Given scarcity of data 

proving casual relationships in sleep medicine, I created a modified DAG to graphically organize 

and cluster potential covariates available in the MrOS cohort (See Figure 4). 

The next challenge was to evaluate which clinically relevant covariates identified in the DAG 

should be included in the final regression model. Stepwise variable selection methods regularly 

used in regression are an outdated approach that violates the assumption that a single hypothesis 

is tested. The creation of multiple models with different combinations of covariates will bias 

standard errors and p-values toward zero and parameter estimates away from zero111. Therefore, I 

used a mixture of clinical knowledge and k-fold cross-validation to build the final model. I opted 

to separate the data by recruitment site instead of randomly splitting the data into 10 groups (10-

fold cross-validation) or performing a stratified cross-validation, both of which are common 

approaches. This strategy allowed me to evaluate heterogeneity across sites and was less 

computationally intensive than leave-one-out cross-validation. 

Cox proportional hazard’s regression112 was a natural choice for statistical test given it is one of 

the most popular regression techniques for survival analysis. Logistic or linear regression would 

not be appropriate since the scientific question involved estimating the cumulative hazard using 
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both time-to-event (time a subject was followed in the trial) and whether the event occurred (died 

/ survived).  

To gauge reproducibility, consistency, and generalizability of the findings, the final models were 

validated using data from the Wisconsin Sleep Cohort (WSC)82,83 and the Sleep Heart Health 

Study (SHHS)84. To improve precision of the results, a meta-analysis was performed. 

This multi-dimensional approach provided a solid framework to evaluate the scientific question. 

Reliable, accurate results were achieved by reducing threats to the study’s internal validity. 

Replication proved the findings were generalizable to other age groups and populations.  
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Methods 

Participants 

The Stanford University Institutional Review Board (IRB) determined that this research does not 

involve human subjects as defined in 45 CFR 46.102(f) or 21 CFR 50.3(g). 

MrOS Sleep Study 

The Osteoporotic Fractures in Men (MrOS) parent study113 is an observational, longitudinal 

cohort of older community-dwelling men. The study enrolled 5,994 men for a baseline study 

(2000–2002) across six clinical centers throughout the United States (Birmingham, Alabama; 

Minneapolis, Minnesota; Palo Alto, California; Monongahela Valley, Pennsylvania; Portland, 

Oregon; and San Diego, California)78,114. Subjects were ≥65, able to walk without assistance, and 

without bilateral hip replacements114. 

The MrOS Sleep Study is an ancillary project that assessed sleep using a combination of 

subjective and objective measures to understand the relationships between sleep disorders and 

falls, fractures, mortality, and vascular disease. This sub-study included 3,135 (59.2%) men from 

the parent study recruited between December 2003 and March 2005115. Participants were not 

eligible for inclusion in the MrOS Sleep Study if they were being treated for sleep apnea with 

positive pressure or oral appliances, or if they used overnight nocturnal oxygen therapy (n = 150). 

Other reasons for non-participation included: death prior to the sleep study (n = 349), study 

participation terminated (n = 39), declined participation in the sleep study (n = 1,997), or because 

MrOS Sleep Study recruitment goals were met prior to enrollment (n = 324)78. 

Of the 3,135 men enrolled in the MrOS Sleep Study, 207 did not complete the overnight sleep 

study and 56 were missing sleep staging data. An additional 197 individuals did not have 

complete mortality data, leaving 2,675 participants who contributed data to this analysis. See 

Figure 5 for an inclusion/exclusion flow chart of MrOS participants. All men provided written 

informed consent; each site received IRB approval. 

Wisconsin Sleep Cohort (WSC) 

Data from the Wisconsin Sleep Cohort (WSC) were used to replicate the main findings. The 

WSC is an ongoing, longitudinal, population-based study of the causes, consequences, and 

natural history of sleep disorders. It was established in 1988 from a sample of employees from 

four state agencies in south central Wisconsin. There are 2,940 participants in the main study 

aged 30 to 60 years at enrollment82,83. Participants were mailed questionnaires every five years 
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asking about the participant’s sleep and medical history. A subsample of 1,546 (53%) agreed to 

undergo in-lab nocturnal polysomnography (PSG) every four years. Rationale and design of the 

WSC study were published in 200982. 

This study used participants who had data on as many of the covariates included in the MrOS 

models as possible. Of the 1,546 who agreed to have sleep studies, 22 were excluded because 

they had inadequate sleep data and two died the same year as the sleep study. Another 136 were 

excluded from analysis because they were either missing mortality or questionnaire data. See 

Figure 6 for a flowchart of the 1,386 WSC participants analyzed. Informed consent was obtained 

from all subjects under a University of Wisconsin-Madison Health Sciences approved IRB 

protocol. 

Sleep Heart Health Study (SHHS) 

The Sleep Heart Health Study (SHHS) is a prospective cohort study of cardiovascular 

consequences of sleep-disordered breathing. Participants were recruited between 1995 and 1998 

from prospective cohort studies including the Framingham Offspring and Omni Study, the 

Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Strong Heart 

Study, and the cohort studies of respiratory disease in Tucson and of hypertension in New York. 

Details of the SHHS study design have been previously reported84. 

Eligible individuals were at least 40 years of age and were not being treated for sleep-disordered 

breathing with positive airway pressure, oral appliance, oxygen, or tracheostomy at the time of 

enrollment. A total of 6,441 participants completed the baseline examination. Of those, 637 

withdrew consent, 252 were excluded due to sleep staging issues (85 had unreliable REM data, 

143 were scored as sleep/wake only, and 24 were scored as REM/NREM/wake only), and two 

were missing all-cause mortality data. See Figure 7 for a flowchart of the 5,550 SHHS 

participants included in the final dataset. Every participant provided written consent and the study 

protocol was approved by the local institutional review board of the participating field site. 

 

Measures 

Polysomnography (PSG) and Subjective Sleep Measures 

MrOS: A full, unattended, portable in-home baseline PSG was conducted at Sleep Visit 1 (Safiro, 

Compumedics, Inc., Melbourne, Australia)116. A standard sleep study includes: 

electroencephalogram (EEG), electrooculogram (EEG), electromyogram (EMG) of the 
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submentalis muscle as well as the anterior tibialis muscles of each leg, electrocardiogram (ECG), 

snoring, breathing effort using respiratory inductance plethysmography summation, airflow from 

a nasal-oral thermistor and a nasal pressure transducer, and oxygen hemoglobin from a finger 

oximeter probe using a 3-second averaging rate. Studies were scored visually by centrally trained 

research technologists to evaluate sleep stages (REM, and non-REM stages N1, N2, and N3) 

using current consensus rules published in the American Academy of Sleep Medicine (AASM) 

Scoring Manual32. 

The primary exposure was REM sleep during a single night, evaluated as percent of total sleep 

time (TST) and total number of minutes spent in REM.  

Standard PSG characteristics were considered for inclusion in the final model using previously 

published definitions117. These include: 

1. Time in Bed (min)  

2. Total Sleep Time (number of minutes spent in non-REM and REM during the sleep 

period) 

3. Time Spent in Each Sleep non-REM Stage (percent time and total minutes) 

4. Wake After Sleep Onset (WASO) (min) 

5. Sleep Efficiency (%) 

6. Sleep Latency (min) and REM Latency (min) 

7. Overall Arousal Index (number of awakenings between 3 and 14 seconds per hour of 

sleep 

8. Apnea Hypopnea Index (number of apneas or hypopneas per hour of sleep 

9. Desaturation Index (number of desaturations per hour of sleep) 

10. Periodic Limb Movements Index (PLMI – number of leg movements per hour of 

sleep) 

11. Sleep Time with Saturated Oxygen Below 80% (% time) 

12. Number of N2 to N1 and Number of N3 to N1/N2 Sleep Stage Shifts/hour 

The variables used to evaluate sleep related breathing disorder included apnea hypopnea index 

(number of apneas and hypopneas per hour of sleep), desaturation index (number of oxygen 

desaturations per hour of sleep) as well as percent sleep time with saturated oxygen below 80%. 

Apnea was defined as a ≥ 90% decrease in airflow for ≥ 10 seconds. Hypopnea was defined as a 

reduction in airflow (at least 30% below baseline) lasting ≥ 10 seconds and associated with either 

a 3% reduction in oxygen saturation or an arousal. 
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Sleep fragmentation was assessed using sleep efficiency (percentage of time in bed spent asleep), 

arousal index (number of awakenings between 3 and 14 seconds per hour of sleep), total number 

of minutes awake after sleep onset, number of N2 to N1 and number of N3 to N1/N2 sleep stage 

shifts per hour of sleep. Other PSG variables included time in bed (min), total sleep time, sleep 

latency (min), REM latency, and periodic limb movement index (with and without arousals). 

Self-reported sleep data included Epworth Sleepiness Scale (ESS)118, Pittsburgh Sleep Quality 

Index119, Functional Outcomes of Sleep Questionnaire120, and positive airway pressure use >3 

months. 

WSC: Full, nocturnal in-lab PSGs were collected using Grass-Telefactor Heritage digital sleep 

systems. The majority of studies used a previously published conventional scoring approach121; 

however, PSG interpretation protocols changed slightly over time to stay current with evolving 

definitions. Trained technicians scored and reviewed sleep stage and apnea/hypopnea events 

using standard criteria24,122. The usual sleep study variables were analyzed (see Table 4). 

Hypopnea was defined as a discernible reduction in breathing (sum of chest and abdominal 

excursions) with a ≥ 4% oxyhemoglobin saturation reduction. Since the current analysis included 

the ESS (which was collected beginning in 1993), the PSG data used were the earliest available 

with ESS data (collected via mailed survey). 

SHHS: A full-montage, unattended home PSG was collected on each participant at baseline using 

a portable monitor (P-Series, Compumedics, Abbotsville, AU). Details of polysomnographic 

equipment, hook-up procedures, failure rates, scoring, and quality assurance and control have 

been previously published123. Standard sleep study variables were analyzed (see Table 6). The 

SHHS PSG protocol was based on the MrOS protocol and all studies from both cohorts were 

scored at the same central sleep reading center s (Case Western Reserve University, directed by S 

Redline). The main difference was that SHHS studies only used thermistors and inductance 

plethysmography to monitor breathing while MrOS measured nasal pressure, thermistors, and 

inductance plethysmography. Hypopnea was defined as a 30% amplitude reduction in breathing 

effort lasting ≥ 10 seconds and associated with either a ≥ 3% desaturation or arousal. Desaturation 

index was defined as a ≥ 4% oxyhemoglobin saturation reduction. SpO2 signals were captured by 

fingertip pulse oximeter (Nonin, Minneapolis, MN, USA) sampled at 1 Hz. 

Actigraphy Measures 

MrOS: Home sleep-wake patterns were estimated using wrist actigraphy (SleepWatch-O, 

Ambulatory Monitoring, Inc., Ardsley, NY). Participants were asked to wear the devices 
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continuously on their non-dominant wrist for a minimum of four consecutive 24 hour periods and 

complete sleep logs to track time into and time out of bed, as well as times the device was 

removed. The sleep logs were used to edit data and set sleep intervals. The devices recorded data 

in three modes: proportional integration mode (PIM), time above threshold (TAT) and zero 

crossings mode (ZCM). In a previous study, the PIM mode was shown to corresponded better to 

PSG124, so that is the mode used for this analysis. Actigraphy scoring algorithms used in this 

study have been published125. 

Actigraphy measures included: mean TST (min) while in bed, mean sleep latency (min), mean 

WASO while in bed (min), mean nighttime sleep efficiency (% time), and mean TST (min) 

outside sleep interval. Data were averaged over the entire period the device was worn to best 

reflect usual sleep patterns. 

WSC and SHHS: Actigraphy was not collected. 

Mortality Outcome 

MrOS: After baseline, participants were contacted every four months to document vital status. 

Next of kin were contacted in cases of non-response. Reported deaths through 2018 were 

confirmed by centralized review of death certificates. Of the 2,872 men with sleep data, 31 were 

missing information on mortality data and 166 (5.8%) ended participation during the follow-up 

period and were excluded from analyses. Cause of death was categorized by ICD-9 codes as 

cardiovascular (396.9-442, 966.71, 785.51), cancer (141.9-208.0), and other (codes not in 

previous categories). For each analysis of cause-specific mortality, individuals who died of a 

different cause were censored. In addition, longevity was defined as survival > 90 years old 

compared with death before 90 years old. Individuals who were less than 90 years old and still 

alive were omitted from the analysis for this outcome. 

WSC: Deaths through 2018 were identified by matching social security numbers with two death 

record sources: National Death Index and Wisconsin State Bureau of Health Information and 

Policy, Vital Records Section. Matches on social security number were verified with participants’ 

age and sex. Cause of death was categorized using MrOS ICD-9 codes. Longevity was not 

evaluated for this cohort due to the younger age. 

SHHS: Multiple concurrent approaches were used to identify and confirm deaths through 2011. 

These included follow-up interviews, written annual questionnaires or telephone contacts with 

study participants or next-of-kin, surveillance of local hospital records and community obituaries, 

and linkage with the Social Security Administration Death Master File as previously described126. 
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Only cardiovascular related cause of death were tracked and ICD-9 codes were not available. 

Therefore, cause of death is not available on all individuals and it was not possible to use the 

same categories used for MrOS and WSC. Instead, cardiovascular related death was defined as 

death caused by cardiovascular disease, coronary heart disease, myocardial infarct, or stroke. 

Longevity was not evaluated for this cohort due to the younger age. 

Other Mental and Physical Measures 

MrOS: Education, race, body mass index (BMI), neck and hip circumference, smoking status, 

weekly alcohol use, and daily caffeine intake were collected at baseline along with the Geriatric 

Depression Scale-15 (GDS)127, Modified Mini-Mental State Examination128 (evaluated as 

continuous and binary variable with a score <77 indicating impairment129), and Physical Activity 

Scale for the Elderly (PASE) Scale130. 

Data on prescription and non-prescription medications were collected at baseline and entered into 

an electronic database managed by the San Francisco Coordinating Center. Each medication was 

matched to its ingredient(s) using the Iowa Drug Information Service Drug Vocabulary131. 

Current use of medications known to affect sleep architecture were included (antidepressants, 

benzodiazepines), as well as sleep medications (nonbenzodiazepines, nonbarbiturate sedative 

hypnotics). 

Self-reported history of physician diagnosis was used to identify chronic medical conditions 

including hypertension, angina, stroke, heart attack, transient ischemic attack (TIA), congestive 

heart failure, type 2 diabetes, chronic obstructive pulmonary disease, osteoarthritis, and 

rheumatoid arthritis. 

WSC: BMI was assessed during the PSG visit. Data on education, race, smoking habits, weekly 

alcohol, and daily caffeine use were collected by questionnaire. Participants reported current use 

of anti-depressants or sedatives and physician diagnosis of hypertension, coronary artery disease, 

or heart attack. 

SHHS: A baseline examination was performed on all participants that included a detailed health 

interview to collect data on history of hypertension, angina, heart attack, congestive heart failure, 

type 2 diabetes, chronic obstructive pulmonary disease, and stroke as well as current prescription 

medication use (anti-depressants and benzodiazepine). Short Form 36 Health Survey (SF-36) was 

also collected which is comprised of self-report quality-of-life measures created as part of the 

Medical Outcomes Study132-134. The Mental Component Scale Standardized Score was used in 

place of the 3MS to evaluate cognition, the Mental Health Index Standardized Score was used in 
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lieu of the GAD to estimate mental health, and the Physical Component Scale Standardized Score 

was used instead of the PASE to account for physical activity. Information on education, race, 

smoking status, caffeine and alcohol use was obtained by self-report. Anthropometric measures 

including weight, height, neck circumference, and waist girth were obtained at the baseline sleep 

study by trained and certified technicians. Although SHHS was a multi-site study, information on 

enrollment site was not included in the shared dataset. 

 

Statistical Analysis 

Characterization of Study Populations 

Descriptive statistics and frequency distributions were performed on demographic, behavioral and 

clinical characteristics in the overall cohort and by quartiles of percent REM. Similarly, 

characteristics of sleep were examined by overall cohort and by REM quartile. Means and 

standard deviations are reported for continuous variables, and number and percent for categorical 

variables. Analyses were performed using SAS 9.4 (Cary, NC)135, R Studio Version 1.1.463136, 

and RevMan 5.3 software137. 

Data were evaluated for missingness and extreme or implausible values. Missing data were 

considered missing at random and imputed using multivariate imputation by chained equations 

operationalized using the R 3.2.5 MICE package138. Rate of loss to follow-up was <10%. 

Collinearity was evaluated using Pearson’s correlation coefficient139 with > 0.70 as the cut-point. 

Based on actigraphy data, individuals with mean TST>8h were categorized as long sleepers and 

TST<5h as short sleepers. 

Survival Models 

Cox proportional hazards models112 were used to assess associations between percent REM and 

all-cause, cardiovascular, cancer, and other (non-cardiovascular, non-cancer) mortality. The Cox 

functional formula is 

ln( ℎ(𝑡)/ℎ0(𝑡)) = (𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑘𝑋𝑘) 

where h(t) is the expected hazard at time t. The baseline hazard is ℎ0(𝑡) is and represents 

the hazard when all independent variables (𝑋1, 𝑋2 , 𝑋𝑘)  equal zero. Since there are no 

assumptions about the shape of the baseline hazard function, Cox is a semi-parametric 

model. Results are reported as hazard ratios (HR) with 95% confidence intervals (95% CI) for 

each Cox model. 
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Percent REM was evaluated as a continuous variable with decrements of 5% as the unit rather 

than 1% to aid with interpretation. Five percent was selected because it is similar to the 6.6% 

standard deviation, but provides a universal unit because it is not dataset dependent. Minutes in 

REM were evaluated using a 25 minutes decrease, which was similar to the 28.6 minute standard 

deviation. 

Cox models were built in two steps using a combination of clinical knowledge and empirical 

covariate selection using data from the MrOS Cohort. Model 1, included covariates selected 

based on known associations including: age, race, education, BMI, smoking status, alcohol, 

caffeine, medication use (sleep, antidepressant, or benzodiazepine), and study site. Next, more 

than 60 variables commonly associated with sleep architecture or mortality were evaluated using 

six-fold cross-validation to obtain the best features to add to Model 1 for the final regression 

models (Model 2)140. At each fold, data from one site was withheld and an optimal model was 

identified using the My.stepwise R package. Criteria for entry into the final model was inclusion 

in at least three of six optimal models. I chose not to withhold a random sample to gauge whether 

site affected variable selection. The REM sleep beta co-efficient from the final model was 

systematically compared to the REM beta co-efficient from each of the six folds to identify 

whether the effect sizes were similar. 

Potential interactions were explored using random survival forests79,80. Models were tested for the 

proportional hazards assumption, influential observations, and linearity assumption using 

Schoenfeld residuals, graphical methods, and martingale residuals. The Schoenfeld residuals test 

for independence between residuals and time for each covariate and for the model. Percent REM 

met the proportional hazards assumption with a Shoenfeld residuals of p = 0.45, however a 

threshold effect was suspected based on Kaplan-Meier survival curves141. Therefore, separate 

models were run with percent REM as a binary variable using 15% as the cut-point, which is 

similar to the first cut-point identified by the conditional inference survival tree. Martingale 

residuals were used to assess nonlinearity for each covariate by evaluating the functional form 

of each covariate. Linearity assumptions were met for all models. Deviance residuals were used 

to evaluate the potential effect of outliers using a normalized transform of the martingale 

residual. There was no indication of influential observations. 

Logistic regression was used to estimate the odds ratio and 95% CI for the association between 

percent REM and longevity. The functional formula for logistic regression is 

ln( 𝑃
1 − 𝑃⁄ ) = (𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑘𝑋𝑘) 
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where the output is logit, or the natural logarithm of the odds where p is probability. The y 

intercept is 𝛽0, representing the expected mean value when all independent variables (𝑋1, 𝑋2 

, 𝑋𝑘)  are equal to zero. The longevity models were adjusted for the same set of covariates used 

in the Cox regression models. Assumptions of logistic regression were checked and met, 

including independence, collinearity, and linearity in the association between continuous 

predictors or covariates and the logit. 

Kaplan-Meier survival curves141 were used to graphically present the probability of surviving to 

any point in time. The horizontal axis (x-axis) represents time in years, and the vertical axis (y-

axis) shows the probability of surviving. The lines represent the different survival curve by group. 

A vertical drop in the curves indicates an event. A vertical tick mark means that a patient was 

censored at that time point. Poor survival rates are reflected by a curve that drops relatively 

rapidly towards zero. The Log-Rank Test was used to compare the total number of events 

observed in each REM quartile with the number of events that would be expected if there were no 

group effect. The Log-Rank statistic is approximately distributed as a chi-square test statistic. 

Sensitivity Analyses 

Multiple sensitivity analyses were conducted to rule out alternative explanations. First, to 

attenuate the possibility of REM sleep being a marker of ill health/undiagnosed health issue at 

baseline, or reverse causation, analyses were run after excluding individuals censored in the first 

two years. Then, to evaluate whether the presence of sleep apnea or medication use influenced the 

association, anyone with an AHI>30 and/or using antidepressants, benzodiazepines, or sleep 

medications were excluded. Another analysis excluded depressed individuals (GDS score >4 or 

antidepressant use). To assess residual confounding from sleep duration, I performed two 

analyses excluding individuals using different TST definitions (TST<5h or >8h from either PSG 

or actigraphy based on previous MrOS publication142 and TST<6h or >8h). Finally, models were 

run using total REM minutes and dichotomized percent REM (cut-point = 15%; similar to lowest 

quartile threshold). 

Sleep Architecture and Mortality 

Sleep stages are inter-dependent (they add to 100%) so conditional inference survival tree and 

random survival forest methods to identify which sleep stage(s) were driving the significance of 

the finding. Conditional inference survival tree and random survival forest analyses were 

performed using the party package ctree and cforest functions in R136,143. All sleep stages (non-
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REM N1, N2, N3, and REM) were included in the models to predict all-cause mortality using 

data from the MrOS study. 

Conditional inference tree models were used to empirically select the best sleep stages and cut-

points to divide the sample based on all-cause mortality risk. To create a tree, data are iteratively 

split into subsamples until only subsamples with different risks remain. The minsplit (minimum 

sum of weights in a node in order to be considered for splitting) was set to four and I did not limit 

tree depth (successive splits). 

Random survival forests79,80 is a supervised machine learning technique that uses an ensemble 

approach to classify data. Simply, random survival forests summarize the results from multiple 

different decision tree models. For this analysis, a series of survival trees were built by splitting 

on a random subset of features using bootstrap samples (sampled with replacement from the 

original training set). The control parameter setting cforest_unbiased was used to build the forest 

and reduce bias in the variable selection and variable importance. The ntree argument (controls 

the overall number of trees in the forest) was set to 1,000, and the mtry argument (controls the 

number of randomly preselected predictor variables for each split) was set to eight. To control the 

tree sizes, a minimum of 400 subjects was required in a node. This classification technique was 

selected because random forests are indifferent to highly correlated data as well as outliers and 

non-linear data and there is minimal risk of overfitting the data. 

After fitting this model, I calculated the variable importance for each individual sleep stage using 

mean decreased accuracy to rank the variables from most to least predictive in context of one 

another. This style of permutation importance was employed because the model uses uncorrelated 

predictors sub-sampled without replacement and unbiased trees will be used to construct the 

forest. To obtain the mean decrease in accuracy, each predictor variable is randomly permutated 

in order to break the original association between the predictor and the outcome. Variables were 

ranked from most to least predictive in context of one another based on the resulting difference in 

prediction accuracy before and after this process. The resulting difference in prediction accuracy 

before and after this process is known as mean decrease in accuracy.  

Validation 

Cox models were repeated using the WSC and SHHS dataset after matching all possible 

covariates across both datasets. All-cause mortality model was stratified by gender in both 

cohorts. 
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Given the smaller samples size, a power calculation was performed for the WSC before running 

the survival models. The Power and Sample Size Program version 3.1.6 was used to evaluate the 

study’s power to reject the null hypothesis that the experimental and control survival curves are 

equal given the sample size. The existing WSC sample of 1,386 includes 345 individuals in the 

lowest quartile of REM sleep. The median survival time for those in the highest quartile was 20.9 

years compared to 20.8 in the lowest. The Type I error probability associated with this test of this 

null hypothesis is 0.05. Assuming the true hazard ratio is 1.10144, the power to reject the null 

hypothesis was less than .20 indicating the study is underpowered. 

Meta-analysis 

To improve precision of the findings and evaluate heterogeneity across studies, a meta-analysis 

was performed using the data from each of the cohorts. Separate models were created for all-

cause and cardiovascular related mortality. All-cause mortality was also stratified by gender. 

Summary estimates (HR, 95% CI) were calculated using a fixed-effect model. Since estimates of 

log hazard ratios and standard errors from the Cox proportional hazards regression models were 

available, the inverse variance-weighted method was utilized to calculate confidence intervals. 

Heterogeneity across studies was estimated by the Cochran Q test (Chi², p≤0.1 to be indicative of 

statistically significant heterogeneity) and I2 statistic145. The I² statistic describes the percentage of 

variation across studies that is due to heterogeneity rather than chance. Analyses were performed 

with RevMan 5.3 software137. 
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Results 

Characterization of Study Populations 

MrOS Cohort: 2,675 males (91.5% white) with a mean age of 76.3 ± 5.5 years at baseline and 

followed for a median of 12.1 years were included. Average age was 86.6 ± 5.2 years at follow-

up. Percent REM ranged from 0 to 43.9% and was normally distributed. Overall mean was 19.2 ± 

6.6% (69.7 ± 28.6 min) with values increasing from 14.8% in the lowest quartile to 23.6% in the 

highest. Table 1 reports demographic, lifestyle, and health characteristics varying across REM 

quartile. Those in the lowest quartile tended to be older with higher rates of anti-depressant use, 

hypertension, heart attack, and TIA, and lower PASE scores. As expected, most objective sleep 

variables differed across quartiles. Subjective sleepiness as measured by total Epworth Sleepiness 

Scale did not have notable variation across quartile. Sleep variables for the MrOS cohort are 

presented in Table 2. Of note was the high amount of wake after sleep onset which was both 

elevated compared to the other groups and significantly higher in the lowest REM quartile (134.5 

± 73.4 min) compared to the highest (102.5 ± 61.7 min). 

WSC: 1,386 subjects (54.3% men, 94.6% white) with a mean age of 51.5 ± 8.5 years at baseline 

were followed for a median of 20.8 years (70.2 ± 7.7 years at follow-up). Table 3 describes 

demographic, lifestyle, and health characteristics for the overall cohort and by REM quartile. 

WSC subjects were younger, mixed-gender, more obese (30.7 vs 27.2 kg/m2), consumed more 

alcohol (3.6 vs 1.9 drinks/week), more likely to be current or never smokers, had fewer co-

morbidities, and had higher anti-depressant and/or sedative use compared to MrOS. Despite these 

differences, most measures had similar distributions across REM quartiles compared to MrOS. 

Demographic and lifestyle variables are compared graphically to MrOS by REM quartile in 

Figure 8 and sleep variables are compared in Figure 9. 

Minutes in REM (67.8 ± 28.9 min) and percent REM range (0-43.0%) were similar, but overall 

mean percent REM (17.6 ± 6.5%) was lower compared to MrOS and SHHS data, possibly due to 

in-lab vs in-home studies. Objective and subjective sleep measures for the WSC cohort are 

provided in Table 4 including variation by REM quartile. While the Epworth Sleepiness Scale did 

not change significantly across REM quartiles, the overall totals were higher than the other 

cohorts indicating the population overall was sleepier. 

SHHS: 5,550 participants (47.6% men, 84.6% white) with a mean age 63.0 ± 11.2 years at 

baseline and monitored for a median of 11.9 years (74.0 ± 10.5 years at follow-up). Demographic, 
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lifestyle, and health characteristics for the SHHS cohort are shown in Table 5. SHHS participants 

were older than WSC and younger than MrOS. There was more ethnic diversity (>15% non-

white) in SHHS compared to the other cohorts, both of which were almost exclusively white. 

There was a higher percentage of individuals who did not drink alcohol (65.1%) and fewer 

participants took medications (anti-depressants or benzodiazepine) compared to the other groups. 

The overall mean (19.4 ± 6.9) and range (0–43.3%) for percent REM was nearly identical to the 

MrOS cohort. TST (390.1 ± 64.2) was longer in SHHS than both MrOS (356.3 ± 68.4) and WSC 

(378.3 ± 58.8). All objective and subjective sleep measures are presented in Table 6. 

 

Mortality Data 

More than half of the MrOS cohort (52.5%) had died compared to only 13.3% of the WSC and 

22.3% from SHHS. These differences are expected given the underlying age differences at 

baseline. The percentage of men that died was higher than women in both WSC (15.1 vs 11.1%) 

and SHHS (25.2 vs 19.7%). Longevity was only evaluated in the MrOS cohort. Of the 1,759 

individuals analyzed, 737 (41.9%) lived to be at least 90 years old. There were more people in the 

lowest REM quartile met criteria for the longevity analysis (29.3%) compared to the other 

quartiles (22.3–25.1%). However the lowest REM quartile also had the lowest percent of people 

who actually lived to aged 90 (39.6%) compared to the other quartiles (41.6–44.1%). 

There were fewer deaths in the WSC sample (184, 13.3%) which was expected given younger 

ages. The SHHS had 1,237 (22.3%) deaths. As with MrOS, those in the lowest REM quartile had 

the highest percentages of death. Mortality statistics for all three cohorts are provided in Table 7. 

 

Survival Models 

Evaluation of the MrOS Cohort 

In MrOS, 1,404 deaths (52.5%) were reported over a median follow-up of 12.1 years 

(interquartile range [IQR] = 5.4). Regression analysis of percent REM as a continuous variable 

showed a downward trend, reflected in the lowest quartile of percent REM having the highest 

percentage of deaths for each mortality category. A 13% higher all-cause mortality rate for every 

5% reduction in REM (HR = 1.13, 95% CI, 1.08–1.19) was observed after adjusting for 

covariates identified using cross-validation. The multi-variate model controlled for the following 

measures: age, race (white versus non–white), education, BMI, smoking status, weekly alcohol, 
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daily caffeine, antidepressants, benzodiazepines, sleep medications, site, overall arousal index, 

sleep time with saturated oxygen below 80%, percent stage N2 sleep, actigraphy mean scored 

sleep while outside of sleep interval, actigraphy wake after sleep onset, Epworth Sleepiness Scale 

Score, Teng Mini Mental State Examination Score, Physical Activity Scale for the Elderly Score, 

Depression, congestive heart failure, chronic obstructive pulmonary disease, type 2 diabetes, 

heart attack, and stroke. There were no noteworthy interactions based on the random forest 

analysis for interaction terms. 

The REM/mortality association persisted for cardiovascular-related mortality (HR = 1.11, 95% 

CI, 1.02–1.20), and other (non-cardiovascular, non-cancer) mortality (HR = 1.19, 95% CI, 1.11–

1.28) but was not statistically significant for cancer-related mortality (HR = 1.06, 95% CI, 0.96–

1.17). The odds of living past 90 years old (longevity) was reduced by 11% with every 5% 

reduction in REM in the final model (odds ratio [OR] = 0.89, 95% CI, 0.81–0.92, Table 8).  

Kaplan-Meier curves of the MrOS dataset showed a possible threshold effect (see Figures 10–13). 

This was particularly notable for cancer mortality (Figure 12). Individuals with <15% REM had a 

significantly higher mortality rate relative to individuals with ≥15% REM for all mortality 

definitions except cancer in the WSC (HRs 1.15–1.78, Table 9). 

Sensitivity analyses of the MrOS cohort found the 1,776 individuals who slept between 5 and 8 

and the 850 individuals who slept between 6 and 8 hours had larger effect sizes on all outcomes 

except cardiovascular-related mortality in the 6 to 8 hour group (HR = 1.0, 95% CI 0.85–1.19). 

No substantial differences were found analyzing the 2,591 individuals who survived the first two 

years, the 1,684 without severe sleep apnea or medication use, the 2,291 individuals without 

depression (Table 10), or when using absolute time in REM (data not shown). 

Validation in the WSC  

The effect size for 5% reduction in REM on risk of all-cause mortality (HR = 1.17, 95% CI, 

1.03–1.34) and non-CVD, non-cancer related mortality (HR = 1.26, 95% CI, 1.01–1.58) were 

significant despite younger age, inclusion of both men and women, longer follow-up period, 

reduced samples size, and event frequency. Effect sizes and direction for CVD-related mortality 

(HR = 1.13, 95% CI, 0.87–1.45) and cancer-related mortality (HR = 1.13, 95% CI, 0.91–1.40) 

were similar to MrOS, although the smaller sample size widened CIs (Table 11). 

When stratified by gender, REM was associated with a 34% increased rate of all-cause mortality 

in women for every 5% REM reduction (HR = 1.34, 95% CI, 1.07–1.68); but was not statistically 

significant in men (HR = 1.09, 95% CI, 0.92–1.30). The possibility of an interaction between age 
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and gender were evaluated; the estimates provided modest statistical evidence for a difference 

(test for interaction p-value = 0.08). 

Individuals with <15% REM had a higher mortality rate relative to individuals with ≥15% with 

odds ratios ranging from 1.36 to 1.78 for all mortality definitions except cardiovascular (HR = 

1.00, Table 12). 

Validation in the SHHS 

The all-cause mortality effect size in the SHHS cohort was almost identical to MrOS with a 13% 

increase in all-cause mortality rate for every 5% reduction in REM (HR = 1.13, 95% CI, 1.07–

1.18). There was a 7% increase in cardiovascular mortality rate (HR = 1.07, 95% CI, 0.97–1.17), 

which was lower than the other two cohorts were, possibly because a different definition of 

cardiovascular death was used. Unlike WSC, when stratified by gender, the hazard ratio was 

higher in men (HR = 1.16, 95% CI, 1.08–1.17) than women (HR = 1.09, 95% CI, 1.02–1.17, 

Table 13). When REM was analyzed as a binary variable, individuals with <15% REM had a 

higher mortality rate relative to individuals with ≥15% with odds ratios ranging from 1.20 to 1.36 

for all-cause and cardiovascular mortality and when stratified by gender (Table 14). 

Sleep Architecture and Mortality  

REM sleep was identified as the most important sleep stage for predicting all-cause mortality 

based on both conditional survival tree and random forest modeling. The first and second nodes 

in the conditional survival tree were percent REM with cut-points of 15.4% (similar to the lowest 

quartile cut-point) and 10.9%. Percentage N1 was the fifth node with a cut-point of 13.6% (Figure 

14). The random survival forest model identified percent REM as the most important sleep stage 

for predicting survival (mean decrease in accuracy = 0.058). Percent N1 was a distant second at 

0.001 (Figure 15). Both techniques found percent REM overwhelmingly important compared to 

other sleep stages, implying that contributions from other stages were inconsequential. This is 

consistent with the Cox results where the REM beta coefficient (0.17) was substantially higher 

than the N2 beta (0.06).  

Meta-analysis  

The meta-analysis of the three cohorts yielded an overall hazard ratio of 1.13 (95% CI 1.10–1.17) 

for all-cause mortality with very little variation between trials (Chi² = 0.31, I² = 0%). The overall 

rate of mortality was significant for both genders with a 14% increased rate of mortality for men 

(HR = 1.14, 95% CI, 1.10–1.18) for each 5% reduction in REM and an I² = 0%. There was an 

11% increase for women (HR = 1.11, 95% CI, 1.04–1.19), however there was more variation 
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between trials (Chi² = 2.93, I2 of 66%) using the fixed effects model. A random effects model was 

evaluated (Tau² = 0.01) for women due to this heterogeneity which yielded a HR = 1.18 (95% CI 

1.04–1.19). For cardiovascular mortality, there was a 10% increase in mortality rate (95% CI 

1.03–1.16) and the studies had little variation (Chi² = 0.45, I2 of 0%). Table 15 contains all data 

used for the meta-analysis. Forest plots and summary of results are presented in Figures 16 to19.  
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Discussion 

Survival analysis of older, community-based men found an association between lower 

percentages of REM sleep and increased mortality. This finding replicated in two independent 

datasets of middle-aged men and women. Similar effect sizes (HR ranging from 1.13–1.19 for a 

5% decrease in REM) were observed in MrOS for all-cause, cardiovascular, cancer, and other 

mortality, even after adjusting for confounding demographic, sleep, and health-related covariates. 

These effect sizes are slightly larger than the mortality risk resulting from aging one year based 

on MrOS data (HR for one-year increase in age ranging from 1.11–1.16). Sensitivity analyses 

using MrOS data showed findings persisted in subgroups that survived the first two years of the 

study and those with sleep duration between 5–8 and 6–8 hours (except cardiovascular), without 

depression, severe sleep apnea, and in persons not using medications that may affect REM sleep.  

The findings replicated in two independent, well-characterized sleep cohorts (WSC and SHHS) 

which is a critical step showing the validity, consistency, and generalizability of the results. 

Specifically, reproducing in the WSC generalized the finding from older white men to middle-

aged, white men and women. The SHHS further expanded the generalizability as the cohort had a 

higher proportion of non-white participants. When stratified by gender, there was a higher rate of 

all-cause mortality in women compared to men in the WSC (1.34 vs 1.09). The SHHS data had a 

higher rate of all-cause mortality in men than women (1.16 vs 1.09).  

A meta-analysis of the three cohorts produced an overall HR of 1.13 for all-cause mortality and 

1.10 for cardio-vascular mortality. When stratified by gender, the rate of mortality was similar for 

men and women (HR= 1.14 vs 1.11). In sum, decreased REM was an indicator of increased 

mortality rate across both genders and a broad age range.  

Since sleep is comprised of multiple sleep stages, it was critical to evaluate the role the other 

sleep stages may play in the association. Therefore, all sleep stages (not just REM) were included 

in the 6-fold cross-validation process used to empirically identify which covariates to include in 

the final models. Only percent N2 was selected for inclusion. In addition, I performed a random 

survival forest analysis to evaluate whether any of the other sleep stages could be driving the 

finding. As explained in the results section, REM sleep was found to be the most important sleep 

stage for predicting mortality based on results from the random forest model, the conditional 

inference trees, and the Cox REM beta coefficient compared to the N2 beta. Therefore, it is 

unlikely the association was caused by a different sleep stage. 
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This finding is supported by a recent publication evaluating REM and mortality in the Sleep 

Heart Health Study108. In their analysis, Zhang and colleagues found the proportion of REM sleep 

to be negatively associated with all-cause mortality even after adjustments for age, gender, race, 

BMI, smoking status, total cholesterol, triglycerides, high-density lipoprotein, history of diabetes, 

history of hypertension, and AHI (HR=0.972, 95% CI: 0.963–0.981). For this analysis, a 1% 

increase in percent REM was used compared to our analysis that used a 5% decrease. 

In MrOS, mean TST actigraphy (in bed) was lower than expected. When combined with mean 

TST out of bed, total daily TST was similar to reports from a different, similar aged cohort146. A 

meta-analysis76 suggested sleep duration is associated with obesity101, hypertension102, 

cardiovascular outcomes103, and all-cause mortality16. Yin and colleagues147 conducted a meta-

analysis on sleep duration and all-cause mortality and cardiovascular events and observed a 

curvilinear U‐shaped association with the lowest risk of all‐cause mortality at a sleep duration of 

about 7 hours per day. Quantity of REM is impacted by sleep duration given the known circadian 

component to REM sleep (most of REM occurs in last third of the sleep period)87. Therefore, I 

controlled for total sleep time in multiple ways to ensure our finding was not a byproduct of the 

known association between sleep duration and mortality. First, I used percent time in REM rather 

than total minutes in REM, which factors in total sleep time from the overnight sleep study. Next, 

I included TST from both the overnight sleep study and home actigraphy in the 6-fold cross-

validation process in the event of residual confounding. Only actigraphy TST was selected for 

inclusion. Finally, I performed sensitivity analyses limiting the population to participants who 

slept 5 to 8 and 6 to 8 hours/night and found no change in effect sizes except for cardiovascular 

related mortality in the 6 to 8 hour group. Therefore, I felt confident that TST was adequately 

addressed as a potential confounder. 

Further, obstructive sleep apnea has been linked to mortality, stroke, and cardiovascular 

disease104-107. I found the REM and all-cause mortality association remained significant after 

excluding individuals with AHI>30 and/or using antidepressants, benzodiazepines, or sleep 

medications. 

Dew and colleagues found an association between mortality and sleep latency >30m and sleep 

efficiency <80%148. Wallace and colleagues149 used several statistical approaches to evaluate 

sleep health characteristics and found that rhythmicity and continuity were the strongest 

predictors of time to all-cause mortality. Individual sleep stages were not evaluated. 

Although different outcomes were used, my findings were consistent with reports linking REM to 

other age-related diseases and conditions. Song and colleagues found that increased time in N1 
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sleep and less time in REM were associated with worsening cognitive performance in MrOS98. 

Smagula and colleagues evaluated the relationship between sleep stages and comorbid depression 

and anxiety in MrOS and found men with clinically significant depressive symptoms spent more 

time in N2 and less time in REM150. Suh and colleagues found a short average cycle length 

(sequence of NREM and REM sleep stages, both >2 min, and not interrupted by >2 min of wake) 

were significantly associated with cognitive decline151 152. While not directly related to mortality, 

these studies support the value of REM sleep and the importance of evaluating sleep stages 

independently from sleep duration. 

Other researchers focused on the association between REM sleep and neurological disease and 

cardiovascular diseases. For example, Pase and colleagues153 evaluated whether REM sleep could 

be linked to declarative memory impairment on the premise that REM abnormalities may be 

suggest deterioration of cholinergic pathways. They found that relatively shorter REM sleep is 

associated with a higher risk of developing dementia. Giubilei and colleagues154 found the 

number and duration of REM phases were significantly reduced in the acute phase of ischemic 

stroke. This reduction correlated with both the severity of neurological deficit and with the 

anatomical site of the lesion. Another study found that patients with vascular cognitive 

impairment-no dementia had reduced REM sleep, among other polysomnographic differences, 

compared to controls155. 

The HypnoLaus study evaluated the relationship between different sleep stages and hypertension, 

diabetes, overweight/obesity, and metabolic syndrome. Although initially a higher prevalence of 

metabolic syndrome was observed in individuals with decreased REM, after multivariate 

adjustment the study concluded that normal variations in sleep stages contribute little to 

metabolic syndrome and associated disorders156. 

Sun and colleagues used machine learning to predict brain age from sleep EEG157. The resulting 

brain age for healthy individuals correlated well with their chronological age. However, there was 

evidence that individuals with significant neurological or psychiatric disease, hypertension or 

diabetes had a significantly higher brain age compared to their true age. The study extracted 102 

features related to sleep staging and then averaged the features in each of the five sleep stages 

over time to yield 510 features per EEG. Most features related to relative bands of power spectra 

and macro-structure sleep features. Percent REM sleep may be another important, easy to 

interpret, aging biomarker.  
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Strengths and Limitations 

This study has many strengths. The most important being replication of the original finding in not 

one, but two independent datasets. This provided strong evidence for the validity, consistency, 

and generalizability of the findings. In addition, the study used robust methods to evaluate the 

association through a combination of machine learning and traditional statistics. Numerous 

sensitivity analyses were conducted to control for potential biases. Finally, three instrumental, 

well-characterized, population-based sleep cohorts were used. 

Limitations include the possibility of unmeasured and residual confounding. To address this 

concern, I used clinical knowledge and empirical model building to select covariates for the final 

models. MrOS did not include women and the population’s mean age at baseline was 76.4 ± 5.5 

years. However, validation in the WSC comprised of men and women with a lower mean age 

(51.5 ± 8.5 years) reduces the likelihood these factors influenced the findings. All three cohorts 

are comprised of community dwelling volunteers and therefore may be healthier than the general 

population, however I adjusted for comorbidities and do not believe this impacts the associations 

presented.  

While replication provides generalizability across a larger age group and reduces, it does not 

eliminate the likelihood of reverse causality. Although >90% of the MrOS and WSC cohorts were 

Caucasian, replication in the SHHS broadens the generalizability somewhat to other races given 

>15% of the population was non-white.  

For all three datasets, REM was quantified based on one night of polysomnography at baseline. 

Although it is possible the “first-night” effect biased our results, it is unlikely the effect would be 

differential with respect to mortality. In addition, a previous publication of the SHHS found no 

evidence of “first-night” effect158. 
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Conclusion and Future Directions 

In this analysis, I found a robust association between percent REM sleep and mortality, which 

persisted across different causes of death and multiple sensitivity analyses. The findings 

replicated in two independent cohorts comprised of different populations providing strong 

evidence for the validity, consistency, and generalizability of the findings. Based on this study, 

REM sleep appears to be a reliable predictor of mortality and may have other predictive health 

values. Strategies to preserve REM may influence clinical therapies and reduce mortality risk, 

particularly for adults with <15% REM. However, mechanistic studies are needed to better 

understand the relationship. 

Given the complex underlying biological functions, further studies are required to understand 

whether the relationship is causal. Before expanding this research into other areas, it would be 

useful to improve internal reliability of the exposure by running all studies through an automated 

scoring algorithm. This would reduce variation in the exposure introduced by using manually 

annotated sleep stages.  

Understanding how much within-subject variation is present over time and whether that change is 

associated with mortality will be an important addition to the REM / mortality story. All three 

cohorts used in this analysis have at least one additional visit with PSG data. Therefore, the 

relative change in REM over time can easily be determined. Even if the finding shows there is no 

association between change in REM and mortality, the results will be informative.  

It is possible that accelerated brain aging is linked with lower levels of REM sleep, making it a 

marker rather than a direct mortality risk factor. The Mignot Lab already has a deep learning 

technique to predict age based on PSG that will soon be submitted for publication. This algorithm 

can be modified to explore the relationship between PSG derived brain age, quantity of REM 

sleep, and mortality rate. I would seek additional advice from Dr. M. Brandon Westover at 

Harvard University, who is also working in this area. 

Finally, it would be worth exploring the genetics of REM given it is a robust phenotype known to 

have a genetic component in both animal and twin studies. I plan to perform a genome wide 

association study (GWAS) on quantity of REM sleep using a collection of international cohorts 

previously assembled by the Mignot Lab to evaluate the genetics of periodic leg movements 

during sleep. Then I would replicate any GWAS findings in the Sleep Apnea Global 

Interdisciplinary Consortium (SAGIC) dataset47. 
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Currently measuring REM sleep currently requires EEG, making it difficult to effectively monitor 

REM sleep outside of a sleep clinic and reducing the utility of REM as a biomarker. However, 

there have been significant advances in wearable devices (i.e., actigraphy). This rapid expansion 

and consumer acceptance of wearable devices offers a low burden mechanism to monitor sleep 

over time. A recent study I was involved in found that when compared to PSG, sleep and wake 

estimates generated by a consumer-grade wearable were comparable to those generated by a 

clinical-grade actigraph159. Newer devices include heart rate data, making it possible to 

differentiate sleep stages160. The ability to use consumer grade actigraphy devices to accurately 

evaluate sleep stages over multiple nights will reduce barriers for easily evaluating REM in the 

general population.  
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Tables 

Table 1: Baseline Demographic, Lifestyle, and Health Characteristics of the MrOS Cohort, Overall and by 

Percent Time in REM Quartiles (Q1–Q4)a 

Characteristic 
Overall  

(n=2,675) 

Q1: <14.8%  

(n=677) 

Q2: 14.8–19.5% 

(n=662) 

Q3: 19.5–23.6% 

(n=667) 

Q4: >23.6% 

(n=669) 

Age at sleep visit (years) 76.3 ± 5.5 77.5 ± 5.7 76.4 ± 5.5 75.7 ± 5.5 75.7± 5.2 

Age at last follow up (years) 86.6 ± 5.2 86.8 ± 5.6 86.7 ± 5.2 86.5 ± 5.2 86.4 ± 4.9 

Race      

    White 2,448 (91.5%) 626 (92.5%) 616 (93.1%) 607 (91.0%) 599 (89.5%) 

    non-White 227 (8.5%) 51 (7.5%) 46 (6.9%) 60 (9.0%) 70 (10.5 %) 

Education      

    Less than high school degree 130 (4.9%) 46 (6.8%) 33 (5.0%) 23 (3.4%) 28 (4.2%) 

    High school degree, some college 1,035 (38.7%) 263 (38.8%) 268 (40.5%) 255 (38.2%) 249 (37.2%) 

    College degree or higher 1510 (56.4%) 368 (54.4%) 361 (54.5%) 389 (58.3%) 392 (58.6%) 

Body Mass Index (kg/m2) 27.2 ± 3.8 27.4 ± 4.1 27.2 ± 3.9 27.0 ± 3.6 27.2 ± 3.6 

Average neck circumference (cm) 39.4 ± 2.8 39.5 ± 3.0 39.5 ± 2.9 39.4 ± 2.7 39.4 ± 2.7 

Average hip circumference (cm) 102.9 ± 8.5 102.9 ± 8.9 103.0 ± 8.4 102.7 ± 8.2 103.1 ± 8.6 

Smoking Status      

    Never 1,056 (39.5%) 272 (40.2%) 247 (37.3%) 283 (42.4%) 254 (38.0%) 

    Past 1,563 (58.5%) 387 (57.2%) 403 (60.9%) 371 (55.6%) 402 (60.1%) 

    Current 55 (2.1%) 17 (2.5%) 12 (1.8%) 13 (1.9%) 13 (1.9%) 

Daily caffeine intake (mg/day) 235.7 ± 246.6 227.0 ± 239.9 235.0 ± 232.9 230.0 ± 249.9 250.8 ± 262.7 

Alcohol Use (drinks/week) (n=2,664) 1.9 ± 1.7 1.7 ± 1.6 2.0 ± 1.8 2.0 ± 1.7 1.9 ± 1.7 

Weekly Alcohol Use  (n=2,664)      

    0 Drinks 1,246 (46.8%) 345 (51.3%) 299 (45.3%) 288 (43.2%) 314 (47.1%) 

    1-4 Drinks 1,271 (47.7%) 301 (44.8%) 319 (48.3%) 335 (50.3%) 316 (47.4%) 

    >5 Drinks 147 (5.5%) 26 (3.9%) 42 (6.4%) 43 (6.5%) 36 (5.4%) 

Medication Use      
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    Current use of antidepressant  201 (7.5%) 83 (12.3%) 40 (6.0%) 44 (6.6%) 34 (5.1%) 

    Current use of benzodiazepine  125 (4.7%) 40 (5.9%) 33 (5.0%) 20 (3.0%) 32 (4.8%) 

    Current use of sleep medications 321 (1.2%) 84 (12.4%) 88 (13.3%) 70 (10.5%) 79 (11.8%) 

Hypertension 1,343 (50.2%) 381 (56.4%) 321 (48.5%) 326 (48.9%) 315 (47.1%) 

Angina 402 (15.0%) 119 (17.6%) 101 (15.3%) 88 (13.2%) 94 (14.1%) 

Stroke 97 (3.6%) 29 (4.3%) 26 (3.9%) 19 (2.8%) 23 (3.4%) 

Heart attack 464 (17.4%) 141 (20.9%) 108 (16.3%) 105 (15.7%) 110 (16.4%) 

Transient ischemic attack 254 (9.5%) 82 (12.1%) 72 (10.9%) 47 (7.1%) 53 (7.9%) 

Congestive heart failure 161 (6.0%) 56 (8.3%) 33 (5.0%) 32 (4.8%) 40 (6.0%) 

Type 2 diabetes 353 (13.2%) 102 (15.1%) 83 (12.5%) 84 (12.6%) 84 (12.6%) 

Chronic obstructive pulmonary disease 139 (5.2%) 46 (6.8%) 37 (5.6%) 23 (3.4%) 33 (4.9%) 

Osteoarthritis 649 (24.3%) 174 (25.7%) 158 (23.9%) 162 (24.3%) 155 (23.2%) 

Rheumatoid arthritis 217 (8.1%) 69 (10.2%) 49 (7.4%) 45 (6.7%) 54 (8.1%) 

Teng Mini Mental State Examination (3TMS) Score (0 – 

100) 

92.9 ± 6.1 92.0 ± 7.2 92.9 ± 6.1 93.4 ± 5.2 93.1 ± 5.4 

Cognitive impairment based on 3TMS (score <= 77) 57 (2.1%) 21 (3.1%) 15 (2.3%) 10 (1.5%) 11 (1.6%) 

Physical Activity Scale for the Elderly Score (0 – 400) 145.4 ± 70.4 134.5 ± 72.4 148.7 ± 69.8 148.2 ± 68.3 150.5 ± 69.9 

Geriatric Depression Score (0 – 15) 1.7 ± 2.1 2.1 ± 2.4 1.7 ± 2.1 1.5 ± 1.8 1.6 ± 2.0 

a Entries are mean ± standard deviation or n (%) 
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Table 2: Baseline Sleep Data from the MrOS Cohort, Overall and by Percent Time in REM Quartiles (Q1–

Q4)a 

Characteristic 
Overall  

(n=2,675) 

Q1: <14.8%  

(n=677) 

Q2: 14.8–19.5% 

(n=662) 

Q3: 19.5–23.6% 

(n=667) 

Q4: >23.6% 

(n=669) 

Objective Sleep Measures      

    Stage N1 sleep (% time) 6.8 ± 4.3 7.8 ± 5.3 7.0 ± 4.3 6.3 ± 3.5 6.0 ± 3.4 

    Stage N1 sleep (min) 23.6 ± 13.5 24.7 ± 14.7 24.7 ± 13.8 23.1 ± 12.5 22.0 ± 12.6 

    Stage N2 sleep (% time) 62.8 ± 9.6 69.2 ± 9.6 63.8 ± 8.8 61.5 ± 7.5 56.7 ± 7.8 

    Stage N2 sleep (min) 223.4 ± 53.4 228.7 ± 63.6 229.5 ± 53.3 226.6 ± 46.4 209.0 ± 45.7 

    Stage N3 sleep (% time) 11.2 ± 8.9 12.3 ± 10.0 11.8 ± 9.4 10.7 ± 7.9 9.9 ± 7.8 

    Stage N3 sleep (min) 40.3 ± 32.4 41.8 ± 35.5 43.0 ± 34.8 39.6 ± 30.1 36.7 ± 28.5 

    Stage REM sleep (% time) 19.2 ± 6.6 10.7 ± 3.5 17.4 ± 1.4 21.5 ± 1.2 27.4 ± 3.2 

    Stage REM sleep (min) 69.7 ± 28.6 36.2 ± 15.0 62.5 ± 12.4 79.3 ± 13.2 101.2 ± 21.2 

    Time in bed (min) 484.4 ± 74.9 481.1 ± 84.8 488.6 ± 72.3 484.9 ± 69.0 483.0 ± 72.3 

    Total sleep time (min) 356.3 ± 68.4 330.6 ± 79.8 359.0 ± 64.5 368.0 ± 58.2 368.1 ± 62.1 

    Long sleeper based on actigraphy (>8h) 190 (7.2%) 41 (6.1%) 50 (7.6%) 38 (5.7%) 61 (9.1%) 

    Short sleeper based on actigraphy (<5 h) 307 (11.7%) 113 (16.7%) 65 (9.8%) 64 (9.6%) 65 (9.7%) 

    Wake after sleep onset (WASO) (min) 114.5 ± 65.9 134.5 ± 73.4 115.3 ± 65.7 105.3 ± 57.1 102.5 ± 61.7 

    Sleep efficiency (%) 76.2 ± 11.9 71.6 ± 13.5 76.3 ± 11.4 78.3 ± 10.2 78.8 ± 10.9 

    Sleep latency (min) 23.1 ± 27.3 26.6 ± 33.2 24.8 ± 30.0 19.4 ± 21.1 21.6 ± 22.5 

    REM latency (min) 108.7 ± 77.0 151.9 ± 98.4 107.8 ± 70.3 91.0 ± 53.8 84.0 ± 58.2 

    Overall arousal Index 23.7 ± 11.8 28.4 ± 13.9 24.2 ± 11.5 22.6 ± 10.5 19.5 ± 8.9 

    Apnea hypopnea index (3% desat/arousal) 20.7 ± 16.0 25.9 ± 18.4 20.5 ± 15.7 19.3 ± 14.9 17.1 ± 13.3 

    Desaturation index (desaturations/h) 20.7 ± 16.3 26.3 ± 19.9 20.1 ± 15.3 19.3 ± 14.9 17.0 ± 13.1 

    Periodic limb movements index  35.8 ± 37.8 40.1 ± 42.0 35.0 ± 37.3 35.4 ± 36.4 32.7 ± 34.7 

    Periodic limb movements with arousals Index 4.1 ± 5.8 5.3 ± 6.9 4.2 ± 2.8 4.0 ± 5.6 3.0 ± 4.1 

    Sleep time with saturated oxygen below 80%  

    (% time) 

0.09 ± 0.51 0.14 ± 0.62 0.08 ± 0.37 1.09 ± 0.56 0.05 ± 0.42 
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Characteristic 
Overall  

(n=2,675) 

Q1: <14.8%  

(n=677) 

Q2: 14.8–19.5% 

(n=662) 

Q3: 19.5–23.6% 

(n=667) 

Q4: >23.6% 

(n=669) 

    Number of N2 to N1 sleep stage shifts/h 0.01 ± 0.05 0.02 ± 0.07 0.01 ± 0.04 0.01 ± 0.04 0.02 ± 0.05 

    Number of N3 to N1/N2 Sleep Stage Shifts/h 2.6 ± 1.8 2.7 ± 2.0 2.7 ± 1.9 2.7 ± 1.7 2.4 ± 1.5 

    Actigraphy: mean total sleep time, in bed (min) 385.4 ± 73.1 375.9 ± 79.8 387.1 ± 73.0 385.7 ± 69.3 393.1 ± 68.8 

    Actigraphy: mean WASO, in bed (min) 78.1 ± 44.3 89.7 ± 51.3 77.4 ± 42.4 74.3 ± 41.1 70.7 ± 38.9 

    Actigraphy: mean sleep latency, in bed (min) 30.6 ± 31.5 33.7 ± 32.8 32.4 ± 36.4 29.3 ± 29.4 27.0 ± 26.5 

    Actigraphy: mean sleep efficiency, in bed (% time) 82.6 ± 10.3 80.1 ± 11.9 82.7 ± 10.2 83.4 ± 9.5 84.3 ± 8.9 

    Actigraphy: mean scored sleep while outside of sleep 

interval (min) 

68.8 ± 59.6 77.0 ± 64.0 68.8 ± 61.0 63.7 ± 55.7 65.8 ± 56.6 

Self-reported Sleep Measures      

Epworth Sleepiness Scale Score (ESS) (0–18) 6.1 ± 3.7 6.2 ± 3.8 6.1 ± 3.8 6.4 ± 3.6 5.9 ± 3.5 

Excessive Daytime Sleepiness (ESS > 10) 348 (13.0%) 89 (13.1%) 88 (13.3%) 97 (14.5%) 74 (11.1%) 

Positive Airway Pressure Use >3 Months 14 (0.5%) 10 (1.5%) 4 (0.6%) 0 (0.0%) 0 (0.0%) 

Pittsburgh Sleep Quality Index Total Score 5.6 ± 3.3 6.1 ± 3.6 5.4 ± 3.1 5.3 ± 3.0 5.5 ± 3.4 

Functional Outcomes of Sleep Questionnaire Total Score 18.7 ± 1.6 18.6 ± 1.8 18.6 ± 1.6 18.8 ± 1.3 18.7 ± 1.5 

a Entries are mean ± standard deviation or n (%) 
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Table 3: Baseline Demographic, Lifestyle, and Health Characteristics of the Wisconsin Sleep Cohort (WSC), 

Overall and by Percent Time in REM Quartiles (Q1–Q4))a 

Characteristic 
Overall 

(n=1,386) 

Q1: <13.3% 

(n=345) 

Q2: 13.3–17.6% 

(n=348) 

Q3: 17.6–21.8% 

(n=347) 

Q4: >21.8% 

(n=346) 

Age at sleep visit (years) 51.5 ± 8.5 53.7 ± 9.0 51.6 ± 8.5 50.7 ± 8.3 50.0 ± 7.8 

Age at last follow up 70.3 ± 7.7 71.6 ± 8.0 70.0 ± 7.7 69.7 ± 7.5 69.8 ± 7.4 

Sex      

    Male 753 (54.3%) 202 (58.6%) 189 (54.3%) 187 (53.9%) 175 (50.6%) 

    Female 633 (45.7%) 143 (41.4%) 159 (45.7%) 160 (46.1%) 171 (49.4%) 

Race      

    White 1,311 (94.6%) 323 (93.6%) 328 (94.3%) 330 (95.1%) 330 (95.4%) 

    non-White 75 (5.4%) 22 (6.4%) 20 (5.7%) 17 (4.9%) 16 (4.6%) 

Education (years) (n=1,375) 14.7 ± 2.3 14.8 ± 2.3 14.8 ± 2.3 14.6 ± 2.4 14.5 ± 2.3 

Body Mass Index (kg/m2) 30.7 ± 6.8 32.6 ± 8.2 29.6 ± 6.0 30.0 ± 5.6 30.4 ± 6.6 

Average neck circumference (cm) 38.0 ± 4.3 39.1 ± 4.4 37.6 ± 4.3 37.7 ± 4.0 37.5 ± 4.2 

Average hip circumference (cm) 108.2 ± 13.5 111.6 ± 15.7 106.5 ± 12.1 106.8 ± 12.0 107.8 ± 13.5 

Smoking Status      

    Never 668 (48.1%) 168 (48.7%) 166 (47.7%) 172 (49.6%) 162 (46.8%) 

    Past 510 (36.8%) 133 (38.6%) 121 (34.8%) 131 (37.8%) 125 (36.1%) 

    Current 208 (15.0%) 44 (12.8%) 61 (17.5%) 44 (12.7%) 59 (17.1%) 

Daily caffeine intake (number of servings/day) 3.0 ± 2.5 3.0 ± 2.7 3.0 ± 2.5 3.1 ± 2.5 2.9 ± 2.6 

Alcohol use (drinks/week) 3.6 ± 5.2 3.0 ± 4.4 3.6 ± 5.0 3.8 ± 5.0 4.0 ± 6.1 

Weekly Alcohol Use        

    0 Drinks 662 (47.8%) 184 (53.3%) 159 (45.7%) 156 (45.0%) 163 (47.1%) 

    1-4 Drinks 349 (25.2%) 74 (21.4%) 96 (27.6%) 94 (27.1%) 85 (24.6%) 

    >5 Drinks 375 (27.1%) 87 (25.2%) 93 (26.7%) 97 (28.0%) 98 (28.3%) 

Medication Use      

    Current use of antidepressant 191 (13.8%) 65 (18.8%) 50 (14.4%) 30 (8.6%) 46 (13.3%) 

    Current use of sedatives 63 (4.5%) 19 (5.5%) 18 (5.2%) 17 (4.9%) 9 (2.6%) 
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Characteristic 
Overall 

(n=1,386) 

Q1: <13.3% 

(n=345) 

Q2: 13.3–17.6% 

(n=348) 

Q3: 17.6–21.8% 

(n=347) 

Q4: >21.8% 

(n=346) 

Hypertension 339 (24.5%) 110 (31.9%) 78 (22.4%) 76 (21.9%) 75 (21.7%) 

Angina 29 (2.1%) 11 (3.2%) 4 (1.1%) 10 (2.9%) 4 (1.2%) 

Stroke 11 (0.8%) 3 (0.9%) 2 (0.6%) 3 (0.9%) 3 (0.9%) 

Heart attack 37 (2.7%) 13 (3.8%) 8 (2.3%) 9 (2.6%) 7 (2.0%) 

Type 2 diabetes 85 (6.1%) 39 (11.3%) 22 (6..3%) 8 (2.3%) 16 (4.6%) 

Emphysema 17 (1.2%) 2 (0.6%) 3 (0.9%) 5 (1.4%) 7 (2.0%) 

a Entries are mean ± standard deviation or n (%) 
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Table 4: Baseline Sleep Data from the Wisconsin Sleep Cohort (WSC), Overall and by Percent Time in 

REM Quartiles (Q1–Q4)a 

Characteristic 
Overall 

(n=1,386) 

Q1: <13.3% 

(n=345) 

Q2: 13.3–17.6% 

(n=348) 

Q3: 17.6–21.8% 

(n=347) 

Q4: >21.8% 

(n=346) 

Objective Sleep Measures      

Stage N1 sleep (% time) 9.8 ± 6.3 12.4 ± 8.3 10.0 ± 6.0 8.6 ± 4.7 8.2 ± 4.8 

Stage N1 sleep (min) 36.2 ± 21.7 42.5 ± 26.0 37.0 ± 22.0 33.2 ± 18.3 32.0 ± 18.1 

Stage N2 sleep (% time) 59.9 ± 10.1 64.9 ± 10.4 61.8 ± 9.0 58.8 ± 9.0 54.1 ± 8.8 

Stage N2 sleep (min) 226.6 ± 51.8 230.0 ± 56.1 232.7 ± 51.3 228.4 ± 50.3 215.1 ± 47.5 

Stage N3 sleep (% time) 12.6 ± 9.7 13.2 ± 10.5 12.6 ± 9.9 12.9 ± 9.5 11.7 ± 8.7 

Stage N3 sleep (min) 47.5 ± 36.7 46.9 ± 38.7 47.0 ± 37.1 49.8 ± 37.0 46.2 ± 34.0 

Stage REM sleep (% time) 17.7 ± 6.5 9.5 ± 3.0 15.6 ± 1.3 19.6 ± 1.2 25.9 ± 3.7 

Stage REM sleep (min) 67.8 ± 28.9 33.8 ± 12.4 58.6 ± 10.1 76.2 ± 12.0 102.6 ± 20.7 

Time in bed (min) 452.3 ± 48.4 448.7 ± 45.9 451.1 ± 48.2 453.5 ± 51.7 455.8 ± 47.3 

Total sleep time (min) 378.3 ± 58.8 353.5 ± 60.1 375.6 ± 56.8 387.9 ± 57.3 396.3 ± 51.8 

Wake after sleep onset (WASO) (min) 60.1 ± 39.4 78.7 ± 44.4 61.7 ± 38.3 52.9 ± 33.6 47.1 ± 32.8 

Sleep Efficiency (%) 83.7 ± 9.8 78.8 ± 11.0 83.3 ± 9.4 85.6 ± 8.4 87.1 ± 8.2 

Sleep Latency (min) 12.2 ± 14.3 14.7 ± 16.7 12.0 ± 13.5 10.8 ± 12.6 11.2 ± 13.8 

REM Latency (min) 124.8 ± 70.6 180.0 ± 84.0 124.3 ± 61.7 104.6 ± 49.9 91.0 ± 45.5 

Apnea hypopnea index (3% desat/arousal) 13.7 ± 20.9 23.2 ± 32.2 12.0 ± 18.0 10.0 ± 12.0 9.6 ± 11.3 

Limb movements index 26.7 ± 23.0 33.1 ± 25.9 26.6 ± 23.8 23.1 ± 21.0 24.2 ± 19.6 

Self-reported Sleep Measures      

Epworth Sleepiness Scale (ESS) (0–18) 8.8 ± 4.1 8.7 ± 4.1 8.7 ± 4.3 8.9 ± 4.0 8.9 ± 3.9 

Excessive daytime sleepiness (ESS>10) 452 (32.6%) 103 (29.9%) 102 (29.3%) 130 (37.5%) 117 (33.8%) 

Self-reported sleepiness 308 (22.2%) 77 (22.3%) 75 (21.6%) 75 (21.6%) 81 (23.4%) 

a Entries are mean ± standard deviation or n (%) 
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Table 5: Baseline Demographic, Lifestyle, and Health Characteristics of the Sleep Heart Health Study 

(SHHS) Cohort, Overall and by Percent Time in REM Quartiles (Q1–Q4)a 

Characteristic 
Overall 

(n=5,550) 

Q1: <15.6 

(n=1,386) 

Q2: 15.6–20.0 

(n=1,390) 

Q3: 20.0–23.9 

(n=1,386) 

Q4: >23.9 

(n=1,388) 

Age at Sleep Visit (years) 63.0 ± 11.2 66.0 ± 11.3 63.1 ± 11.1 62.1 ± 10.9 60.8 ± 10.9 

Age at Last Follow up 74.0 ± 10.5 76.6 ± 10.2 74.2 ± 10.5 73.3 ± 10.3 72.1 ± 10.5 

Sex      

Male 2640 (47.6%) 703 (50.7%) 703 (50.6%) 643 (46.4%) 591 (42.6%) 

Female 2910 (52.4%) 683 (49.3%) 687 (49.4%) 743 (53.6%) 797 (57.4%) 

Race      

White 4,696 (84.6%) 1,154 (83.3%) 1,186 (85.3%) 1,189 (85.8%) 1,167 (84.1%) 

non-White 854 (15.4%) 232(16.7%) 204 (14.7%) 197 (14.2%) 221 (15.9%) 

Education (n=5,069)      

Less than 10 years of education 416 (8.2%) 132 (10.3%) 92 (7.2%) 104 (8.3%) 88 (7.0%) 

11-15 years of education 2,624 (51.6%) 646 (50.4%) 665 (51.8%) 659 (52.4%) 654 (51.8%) 

16-20 years of education 1,826 (35.9%) 450 (35.1%) 466 (36.3%) 452 (35.9%) 458 (36.3%) 

More than 20 years of education 220 (4.3%) 55 (4.3%) 60 (4.7%) 43 (3.4%) 62 (4.9%) 

Body Mass Index (kg/m2) 28.1 ± 5.0 28.3 ± 5.4 28.1 ± 5.0 28.1 ± 4.9 27.9 ± 4.8 

Average Neck Circumference (cm) 37.8 ± 4.2 38.1 ± 4.3 37.9 ± 4.1 37.7 ± 4.2 37.4 ± 4.2 

Average Hip Circumference (cm) 106.2 ± 20.3 106.6 ± 17.4 106.1 ± 14.9 106.3 ± 30.2 105.7 ± 14.7 

Smoking Status (n=5,510)      

Never 2,593 (47.1%) 636 (46.2%) 629 (45.5%) 681 (49.6%) 647 (46.9%) 

Past 2,384 (43.3%) 630 (45.8%) 613 (44.4%) 563 (41.0%) 578 (41.9%) 

Current 533 (9.7%) 110 (8.0%) 139 (10.1%) 130 (9.5%) 154 (11.2%) 

Daily Caffeine Use (number of servings/day) 2.7 ± 2.7 2.4 ± 2.5 2.7 ± 2.8 2.8 ± 2.7 2.7 ± 2.7 

Alcohol Use (drinks/week)  2.8 ± 5.7 2.8 ± 6.2 3.0 ± 6.0 2.6 ± 4.9 2.9 ± 5.7 

Weekly Alcohol Use        

0 Drinks 3,353 (65.1%) 872 (67.9%) 824 (63.9%) 845 (65.5%) 812 (63.1%) 

1-4 Drinks 758 (14.7%) 158 (12.3%) 194 (15.0%) 194 (15.0%) 212 (16.5%) 

>5 Drinks 1,042 (20.2%) 255 (19.8%) 272 (21.1%) 252 (19.5%) 263 (20.4%) 
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Characteristic 
Overall 

(n=5,550) 

Q1: <15.6 

(n=1,386) 

Q2: 15.6–20.0 

(n=1,390) 

Q3: 20.0–23.9 

(n=1,386) 

Q4: >23.9 

(n=1,388) 

Medication Use 

Current Use of Antidepressant (n=5,533) 152 (2.7%) 62 (4.5%) 44 (3.2%) 21 (1.5%) 25 (1.8%) 

Current Use of Benzodiazepine (n=5,533) 282 (5.1%) 120 (8.7%) 61 (4.4%) 53 (3.8%) 48 (3.5%) 

Hypertension 2,341 (42.2%) 710 (51.2%) 579 (41.7%) 549 (39.6%) 503 (36.2%) 

Angina (n=5,396) 401 (7.4%) 119 (8.9%) 96 (7.1%) 105 (7.7%) 81 (6.0%) 

Stroke (n=5,412) 180 (3.3%) 60 (4.5%) 53 (3.9%) 39 (2.9%) 28 (2.1%) 

Heart Attack (n=5,386) 333 (6.2%) 86 (6.4%) 90 (6.7%) 86 (6.4%) 71 (5.2%) 

Congestive Heart Failure (n=4,810) 129 (2.7%) 42 (3.6%) 33 (2.7%) 33 2.7%) 21 (1.7%) 

Type 2 Diabetes (n=5,289) 383 (7.2%) 137 (10.4%) 92 (6.9%) 81 (6.1%) 73 (5.5%) 

Chronic Obstructive Pulmonary Disease (n=5,450) 59 (1.1%) 26 (1.9%) 14 (1.0%) 9 (0.7%) 10 (0.7%) 

Short Form 36 Health Survey (SF-36) Scores     

Mental Component Scale Standardized Score (n=5,069) 53.3 ± 8.2 52.7 ± 8.6 53.6 ± 8.3 53.6 ± 7.9 53.3 ± 8.0 

Mental Health Index Standardized Score (n=5,133) 79.0 ± 15.2 77.7 ± 15.6 79.4 ± 15.4 79.7 ± 14.7 79.1 ± 15.2 

Physical Component Scale Standardized Score 

(n=5,069) 

47.5 ± 9.8 45.8 ± 10.7 47.7 ± 9.6 48.1 ± 9.5 48.6 ± 9.3 

a Entries are mean ± standard deviation or n (%) 
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Table 6: Baseline Sleep Data from the Sleep Heart Health Study (SHHS) Cohort, Overall and by Percent 

Time in REM Quartiles (Q1–Q4)a 

Characteristic 
Overall 

(n=5,550) 

Q1: <15.6 

(n=1,386) 

Q2: 15.6–20.0 

(n=1,390) 

Q3: 20.0–23.9 

(n=1,386) 

Q4: >23.9 

(n=1,388) 

Objective Sleep Measures      

Stage N1 Sleep (% time) 5.2 ± 3.9 5.3 ± 4.8 5.5 ± 3.9 5.1 ± 3.4 5.0 ± 3.3 

Stage N2 Sleep (% time) 57.6 ± 13.3 66.6 ± 16.2 57.7 ± 10.8 55.1 ± 10.3 51.1 ± 9.8 

Stage N3 Sleep (% time) 17.8 ± 12.0 17.7 ± 14.1 18.9 ± 11.7 17.9 ± 11.1 16.5 ± 10.4 

Stage REM Sleep (% time) 19.4 ± 6.9 10.4 ± 4.8 17.9 ± 1.3 21.9 ± 1.1 27.4 ± 3.1 

Time in Bed (min) 434.7 ± 59.1 425.3 ± 64.8 436.4 ± 58.4 439.3 ± 55.2 437.8 ± 56.7 

Total Sleep Time (min) 390.1 ± 64.2 336.7 ± 70.3 359.0 ± 61.7 372.3 ± 55.7 372.4 ± 61.7 

Wake After Sleep Onset (WASO) (min) 60.6 ± 43.6 73.4 ± 50.8 63.8 ± 44.3 53.4 ± 35.3 51.7 ± 38.8 

Sleep Efficiency (%) 83.0 ± 10.5 79.3 ± 12.4 82.4 ± 10.1 84.9 ± 8.3 85.2 ± 9.6 

Sleep Latency (min) 14.0 ± 20.4 15.2 ± 23.2 13.6 ± 18.4 13.6 ± 18.8 13.7 ± 21.0 

REM Latency (min) 86.3 ± 57.8 111.4 ± 84.2 89.9 ± 50.3 77.3 ± 38.6 66.8 ± 34.4 

Number of N2 to N1 Sleep Stage Shifts/hour 0.03 ± 0.08 0.04 ± 0.09 0.03 ± 0.09 0.03 ± 0.07 0.02 ± 0.08 

Number of N3 to N1/N2 Sleep Stage Shifts/hour 2.9 ± 2.0 2.6 ± 2.3 3.1 ± 2.0 3.1 ± 1.8 3.0 ± 1.8 

Apnea Hypopnea Index (3% desat/arousal) 17.8 ± 15.9 21.5 ± 19.1 18.8 ± 16.2 16.2 ± 13.6 14.6 ± 12.9 

Desaturation Index (4% desat/hour) 7.6 ± 10.6 10.2 ± 13.9 8.1 ± 10.8 6.5 ± 8.2 5.8 ± 7.7 

Sleep Time with Saturated Oxygen Below 80% (% time) 0.2 ± 1.9 0.3 ± 2.1 0.2 ± 1.7 0.2 ± 2.5 0.1 ± 0.7 

Self-reported Sleep Measures      

Epworth Sleepiness Scale Score (ESS) (0 - 18) (n=5,335) 7.8 ± 4.4 7.8 ± 4.5 7.9 ± 4.3 7.6 ± 4.4 7.9 ± 4.4 

Excessive Daytime Sleepiness (ESS Score > 10) 

(n=5,335) 

1,346 (25.2%) 343 (26.0%) 337 (25.2%) 321 (24.0%) 345 (25.7%) 

a Entries are mean ± standard deviation or n (%) 
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Table 7: Mortality Data for the Osteoporotic Fractures in Men Study (MrOS) and Wisconsin Sleep Cohort 

(WSC) and Sleep Heart Health Study (SHHS), Overall and by Percent Time in REM Quartiles (Q1–Q4)a 

Mortality of MrOS Cohort, Overall Cohort and by Percent Time in REM Quartiles (Q1–Q4)   

Characteristic 
Overall  

(n=2,675) 

Q1: <14.8%  

(n=677) 

Q2: 14.8–19.5% 

(n=662) 

Q3: 19.5–23.6% 

(n=667) 

Q4: >23.6% 

(n=669) 

All-cause Mortality  1,404 (52.5%) 434 (64.1%) 354 (53.5%) 310 (46.5%) 306 (45.7%) 

Cardiovascular Mortality  490 (18.3%) 154 (22.7%) 128 (19.3%) 102 (15.3%) 106 (15.8%) 

Cancer Mortality 310 (11.6%) 90 (13.3%) 68 (10.3%) 71 (10.6%) 81 (12.1%) 

Other Mortality 604 (22.6%) 190 (28.1%) 158 (23.9%) 137 (20.5%) 119 (17.8%) 

Characteristic 
Overall  

(n=1,759) 

Q1: <14.8%  

(n=515) 

Q2: 14.8–19.5% 

(n=442) 

Q3: 19.5–23.6% 

(n=410) 

Q4: >23.6% 

(n=392) 

Longevity (>= 90 years old) 737 (41.9%) 204 (39.6%) 189 (42.8%) 181 (44.1%) 163 (41.6%) 

      

Mortality of Wisconsin Sleep Cohort, Overall Cohort and by Percent Time in REM Quartiles (Q1–Q4) 

Characteristic 
Overall  

(n=1,386) 

Q1: <13.3% 

(n=345) 

Q2: 13.3–17.6% 

(n=348) 

Q3: 17.6–21.8% 

(n=347) 

Q4: >21.8% 

(n=346) 

All-cause Mortality  184 (13.3%) 62 (18.0%) 50 (14.4%) 41 (11.8%) 31 (9.0%) 

Females (n=633) 70 (11.1%) 27 (18.9%) 18 (11.3%) 17 (10.6%) 8 (4.7%) 

Males (n=753) 114 (15.1%) 35 (17.3%) 32 (16.9%) 24 (12.8%) 23 (13.1%) 

Cardiovascular Mortality  50 (3.6%) 17 (4.9%) 17 (4.9%) 9 (2.6%) 7 (2.0%) 

Cancer Mortality 71 (5.1%) 22 (6.4%) 19 (5.5%) 18 (5.2%) 12 (3.5%) 

Other Mortality 63 (4.5%) 23 (6.7%) 14 (4.0%) 14 (4.0%) 12 (3.5%) 

a Entries are n (%)  
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Mortality of Sleep Heart Health Study Cohort, Overall Cohort and by Percent Time in REM Quartiles (Q1–Q4) 

Characteristic 
Overall 

(n=5,550) 

Q1: <15.6 

(n=1,386) 

Q2: 15.6–20.0 

(n=1,390) 

Q3: 20.0–23.9 

(n=1,386) 

Q4: >23.9 

(n=1,388) 

All-cause Mortality 1,237 (22.3%) 446 (32.2%) 304 (21.9%) 276 (19.9%) 211 (15.2%) 

Females (n=2,910) 572 (19.7%) 204 (29.9%) 125 (18.2%) 139 (18.7%) 104 (13.0%) 

Males (n=2,640) 665 (25.2%) 242 (34.4%) 179 (25.5%) 137 (21.3%) 107 (18.1%) 

Cardiovascular Mortality (n=4,810) 343 (7.1%) 122 (10.5%) 81 (6.7%) 77 (6.2%) 63 (5.2%) 

a Entries are n (%)  



61 

Table 8: Mortality Risk Ratios from Cox Regression for 5% reduction in Percent REM in the Osteoporotic 

Fractures in Men Study (MrOS)a 

Mortality Risk Ratios for the MrOS Cohort Using Percent REM as a Continuous Variable (5% Decrease)   

Outcome (n=2,675) Overall Deaths  
Unadjusted  

HR (95% CI) 

Age Adjusted 

HR (95% CI) 

Model 1   

HR (95% CI) 

Model 2   

HR (95% CI) 

All–cause Mortality  1,404 (52.5%) 1.19 (1.14–1.24) 1.12 (1.07–1.16) 1.11 (1.07–1.15) 1.13 (1.08–1.19) 

Cardiovascular Mortality  490 (18.3%) 1.24 (1.16–1.33) 1.12 (1.05–1.20) 1.11 (1.03–1.18) 1.11 (1.02–1.20) 

Cancer Mortality  310 (11.6%) 1.16 (1.06–1.26) 1.03 (0.95–1.13) 1.03 (0.94–1.12) 1.06 (0.96–1.17) 

Other Mortality 604 (22.6%) 1.26 (1.19–1.34) 1.16 (1.09–1.23) 1.16 (1.09–1.23) 1.19 (1.11–1.28) 

Outcome (n=1,759) Overall >=90 
Unadjusted  

OR (95% CI) 

Age Adjusted 

OR (95% CI) 

Model 1   

OR (95% CI) 

Model 2   

OR (95% CI) 

Longevity (>=90 years old) 737 (41.9%) 0.97 (0.90-1.03) 0.85 (0.78-0.93) 0.86 (0.79-0.94) 0.89 (0.81-0.92) 

a Entries are n (%) Abbreviations: Hazard Ratio (HR), Odds Ratio (OR), Confidence Interval (CI)   

Model 1: Age, Race (white versus non–white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, Antidepressants, 

Benzodiazepines, Sleep Medications, and Site 

Model 2: Model 1 + Overall Arousal Index, Sleep Time with Saturated Oxygen Below 80%, Percent Stage N2 Sleep, Actigraphy Mean Scored Sleep While Outside 

of Sleep Interval, Actigraphy Wake After Sleep Onset, Epworth Sleepiness Scale Score, Teng Mini Mental State Examination Score, Physical Activity Scale for the 

Elderly Score, Depression, Congestive Heart Failure, Chronic Obstructive Pulmonary Disease, Type 2 Diabetes, Heart Attack, and Stroke  
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Table 9: Mortality Risk Ratios from Cox Regression Using Percent REM as Binary Variable (< 15%) in the 

Osteoporotic Fractures in Men Study (MrOS)a 

Mortality Risk Ratios for the MrOS Cohort using Percent REM as Binary Variable (< 15%)  

Outcome (n=2,675) Overall Deaths 
Unadjusted  

HR (95% CI) 

Age Adjusted 

HR (95% CI) 

Model 1   

HR (95% CI) 

Model 2   

HR (95% CI) 

All–cause mortality  1,404 (52.5%) 1.59 (1.42–1.78) 1.34 (1.20–1.50) 1.33 (1.18–1.49) 1.28 (1.12–1.46) 

Cardiovascular mortality  490 (18.3%) 1.62 (1.34–1.96) 1.34 (1.11–1.62) 1.30 (1.07–1.56) 1.20 (0.96–1.49) 

Cancer mortality  310 (11.6%) 1.37 (1.08–1.76) 1.22 (0.95–1.56) 1.21 (0.94–1.55) 1.31 (0.99–1.73) 

Other mortality  604 (22.6%) 1.68 (1.42–2.00) 1.41 (1.19–1.68) 1.42 (1.19–1.69) 1.35 (1.10–1.64) 

Outcome (n=1,759) Overall >=90 
Unadjusted  

OR (95% CI) 

Age Adjusted 

OR (95% CI) 

Model 1   

OR (95% CI) 

Model 2   

OR (95% CI) 

Longevity (>=90 years old) 737 (41.9%) 0.85 (0.69-1.05) 0.58 (0.44-0.75) 0.59 (0.45-0.77) 0.72 (0.53-0.98) 

a Entries are n (%)  Abbreviations: Hazard Ratio (HR), Odds Ratio (OR), Confidence Interval (CI)   

Model 1: Age, Race (white versus non-white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, Antidepressants, 

Benzodiazepines, Sleep Medications, and Site 

Model 2: Model 1 + Overall Arousal Index, Sleep Time with Saturated Oxygen Below 80%, Percent Stage N2 Sleep, Actigraphy Mean Scored Sleep While 

Outside of Sleep Interval, Actigraphy Wake After Sleep Onset, Epworth Sleepiness Scale Score, Teng Mini Mental State Examination Score, Physical Activity 

Scale for the Elderly Score, Depression, Congestive Heart Failure, Chronic Obstructive Pulmonary Disease, Type 2 Diabetes, Heart Attack, and Stroke  
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Table 10: Sensitivity Analyses of Mortality Hazard Ratios from Cox Regression for the Osteoporotic 

Fractures in Men Study (MrOS)a 

Sensitivity Analysis Mortality Hazard Ratios for the MrOS Cohort Using Percent REM as a Continuous Variable (5% Decrease)  

 
Full Dataset 

(n=2,675) 

Survived First 2 Years of Study 

(n=2,591) 

 No OSA / Medication  

(n=1,684) 

Outcome  
Overall Number 

Deaths n (%) 

Model 2   

HR (95% CI) 

Overall Number 

Deaths n (%) 

Model 2   

HR (95% CI) 

Overall Number 

Deaths n (%) 

Model 2   

HR (95% CI) 

All–cause mortality  1,404 (52.5%) 1.13 (1.08–1.19) 1,320 (50.9%) 1.12 (1.07–1.18) 821 (48.8%) 1.13 (1.06–1.20) 

Cardiovascular mortality  490 (18.3%) 1.11 (1.02–1.20) 460 (17.8%) 1.10 (1.02–1.20) 269 (16.0%) 1.10 (0.99–1.22) 

Cancer mortality  310 (11.6%) 1.06 (0.96–1.17) 291 (11.2%) 1.06 (0.95–1.17) 184 (10.9%) 1.01 (0.89–1.15) 

Other mortality 604 (22.6%) 1.19 (1.11–1.28) 569 (22.0%) 1.18 (1.09–1.27) 368 (21.9%) 1.23 (1.12–1.35) 

Survived First 2 Years of Study group excluded individuals who were censored during the first two years 

No OSA / Medication group excluded individuals with an AHI > 30 or current use of antidepressants, benzodiazepines, or sleep medications 

       

Sensitivity Analysis Mortality Hazard Ratios for the MrOS Cohort Using Percent REM as a Continuous Variable (5% Decrease)  

 
No Depression 

(n=2,291) 

Normal Sleepers (5-8 Hours) 

(n=1,776) 

Normal Sleepers (6-8 Hours) 

(n=859) 

Outcome  
Overall Number 

Deaths n (%) 

Model 2   

HR (95% CI) 

Overall Number 

Deaths n (%) 

Model 2   

HR (95% CI) 

Overall Number 

Deaths n (%) 

Model 2   

HR (95% CI) 

All–cause mortality  1,153 (50.3%) 1.14 (1.08–1.20) 872 (49.1%) 1.17 (1.09–1.25) 408 (47.5%) 1.19 (1.08–1.31) 

Cardiovascular mortality  399 (17.4%) 1.13 (1.03–1.24) 310 (17.5%) 1.10 (0.98–1.23) 145 (16.9%) 1.00 (0.85–1.19) 

Cancer mortality  271 (11.8%) 1.04 (0.93–1.17) 200 (11.3%) 1.12 (0.98–1.27) 93 (10.8%) 1.13 (0.92–1.37) 

Other mortality 483 (21.1%) 1.20 (1.11–1.30) 362 (20.4%) 1.26 (1.14–1.40) 170 (19.8%) 1.38 (1.19–1.61) 

a Entries are n (%) 

No depression group excluded individuals with Geriatric Depression Score >4 or current antidepressant use 

Model 2: Age, Race (white versus non–white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, Antidepressants, 

Benzodiazepines, Sleep Medications, Site, Overall Arousal Index, Sleep Time with Saturated Oxygen Below 80%, Percent Stage N2 Sleep, Actigraphy Mean 

Scored Sleep While Outside of Sleep Interval, Actigraphy Wake After Sleep Onset, Epworth Sleepiness Scale Score, Teng Mini Mental State Examination Score, 

Physical Activity Scale for the Elderly Score, Depression, Congestive Heart Failure, Chronic Obstructive Pulmonary Disease, Type 2 Diabetes, Heart Attack, and 

Stroke  
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Table 11: Mortality Hazard Ratios from Cox Regression for 5% reduction in Percent REM in the Wisconsin 

Sleep Cohort (WSC)a 

Mortality Hazard Ratios for WSC Using Percent REM as a Continuous Variable (5% Decrease)   

Outcome (n=1,386) Overall Deaths  
Unadjusted  

HR (95% CI) 

Age/Gender Adjusted 

HR (95% CI) 

Model 1   

HR (95% CI) 

Model 2   

HR (95% CI) 

All–cause Mortality  184 (13.3%) 1.22 (1.08–1.36) 1.15 (1.03–1.29) 1.14 (1.01–1.28) 1.17 (1.03–1.34) 

Females (n=633) 70 (11.1%) 1.38 (1.15–1.66) 1.36 (1.13–1.64) 1.29 (1.06–1.57) 1.34 (1.07–1.68) 

Males (n=753) 114 (15.1%) 1.11 (0.96–1.28) 1.02 (0.88–1.18) 1.02 (0.89–1.19) 1.09 (0.92–1.30) 

Cardiovascular Mortality  50 (3.6%) 1.33 (1.07–1.66) 1.21 (0.97–1.51) 1.18 (0.94–1.47) 1.13 (0.87–1.45) 

Cancer Mortality 71 (5.1%) 1.16 (0.97–1.40) 1.11 (0.92–1.33) 1.12 (0.93–1.36) 1.13 (0.91–1.40) 

Other Mortality 63 (4.5%) 1.20 (0.98–1.46) 1.16 (0.95–1.41) 1.13 (0.93–1.37) 1.26 (1.01–1.58) 

a Entries are n (%) Abbreviations: Hazard Ratio (HR), Confidence Interval (CI)    

Model 1: Age, Sex, Race (white versus non–white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, Antidepressants, and 

Sedatives 

Model 2: Model 1 + Percent Stage N2 Sleep, Wake After Sleep Onset, Epworth Sleepiness Scale Score, Emphysema, Type 2 Diabetes, Heart Attack, and Stroke  
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Table 12: Mortality Hazard Ratios from Cox Regression Using Percent REM as Binary Variable (< 15%) in 

the Wisconsin Sleep Cohort (WSC)a 

Mortality Risk Ratios for WSC Using Percent REM as Binary Variable (< 15%)   

Outcome (n=1,386) Overall Deaths  
Unadjusted  

HR (95% CI) 

Age/Gender Adjusted 

HR (95% CI) 

Model 1   

HR (95% CI) 

Model 2   

HR (95% CI) 

All–cause mortality  184 (13.3%) 1.66 (1.24–2.22) 1.36 (1.01–1.83) 1.34 (0.99–1.81) 1.36 (0.98–1.89) 

Females (n=633) 70 (11.1%) 2.11 (1.32–3.34) 1.95 (1.22–3.14) 1.70 (1.03–2.80) 1.70 (0.99–2.91) 

Males (n=753) 114 (15.1%) 1.40 (0.96–2.02) 1.06 (0.72–1.55) 1.08 (0.74–1.58) 1.15 (0.75–1.76) 

Cardiovascular mortality  50 (3.6%) 1.80 (1.03–3.14) 1.29 (0.73–2.28) 1.26 (0.71–2.23) 1.00 (0.52–1.90) 

Cancer mortality 71 (5.1%) 1.54 (0.96–2.47) 1.28 (0.79–2.07) 1.35 (0.83–2.20) 1.36 (0.81–2.30) 

Other mortality 63 (4.5%) 1.74 (1.06–2.87) 1.54 (0.93–2.56) 1.46 (0.86–2.44) 1.78 (1.01–3.15) 

a Entries are n (%), Abbreviations: Hazard Ratio (HR), Confidence Interval (CI) 

Model 1: Age, Sex, Race (white versus non–white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, Antidepressants, and 

Sedatives 

Model 2: Model 1 + Percent Stage N2 Sleep, Wake After Sleep Onset, Epworth Sleepiness Scale Score, Emphysema, Type 2 Diabetes, Heart Attack, and Stroke  
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Table 13: Mortality Hazard Ratios from Cox Regression for 5% Reduction in Percent REM in the Sleep 

Heart Health Study (SHHS)a 

Mortality Hazard Ratios for SHHS Using Percent REM as a Continuous Variable (5% Decrease)  

Outcome (n=5,550) Overall Deaths  
Unadjusted  

HR (95% CI) 

Age/Gender Adjusted 

HR (95% CI) 

Model 1   

HR (95% CI) 

Model 2   

HR (95% CI) 

All-cause Mortality 1,237 (22.3%) 1.27 (1.22 - 1.32) 1.13 (1.09 - 1.18) 1.13 (1.09 - 1.18) 1.13 (1.07 - 1.18) 

Females (n=2,910) 572 (19.7%) 1.28 (1.22 - 1.36) 1.11 (1.05 - 1.17) 1.11 (1.05 - 1.17) 1.09 (1.02 - 1.17) 

Males (n=2,640) 665 (25.2%) 1.25 (1.18 - 1.31) 1.15 (1.09 - 1.22) 1.15 (1.09 - 1.21) 1.16 (1.08 - 1.24) 

Cardiovascular Mortality (n=4,810) 343 (7.1%) 1.25 (1.16 - 1.34) 1.05 (0.97 - 1.13) 1.05 (0.97 - 1.13) 1.07 (0.97 - 1.17) 

a Entries are n (%) Abbreviations: Hazard Ratio (HR), Confidence Interval (CI)    

Model 1: Age, Sex, Race (white versus non-white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, Antidepressants, and 

Benzodiazepines 

Model 2: Model 1 + Overall Arousal Index, Sleep Time with Saturated Oxygen Below 80%, Percent Stage N2 Sleep, Epworth Sleepiness Scale Score, SF-36 Mental 

Component Scale Standardized Score, SF-36 Mental Health Index Standardized Score, SF-36 Physical Component Scale Standardized Score, Congestive Heart 

Failure, Chronic Obstructive Pulmonary Disease, Type 2 Diabetes, Heart Attack, and Stroke  
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Table 14: Mortality Hazard Ratios from Cox Regression Using Percent REM as Binary Variable (< 15%) in 

the Sleep Heart Health Study (SHHS)a 

Mortality Risk Ratios for SHHS Using Percent REM as Binary Variable (< 15%)  

Outcome (n=5,550) Overall Deaths  
Unadjusted  

HR (95% CI) 

Age/Gender Adjusted 

HR (95% CI) 

Model 1   

HR (95% CI) 

Model 2   

HR (95% CI) 

All-cause Mortality 1,237 (22.3%) 1.86 (1.65 - 2.09) 1.35 (1.20 - 1.52) 1.35 (1.20 - 1.53) 1.28 (1.12 - 1.47) 

Females (n=2,910) 572 (19.7%) 1.97 (1.66 - 2.35) 1.27 (1.07 - 1.52) 1.27 (1.06 - 1.53) 1.20 (0.98 - 1.47) 

Males (n=2,640) 665 (25.2%) 1.72 (1.47 - 2.02) 1.41 (1.20 - 1.66) 1.41 (1.20 - 1.66) 1.35 (1.13- 1.63) 

Cardiovascular Mortality (n=4,810) 343 (7.1%) 1.93 (1.54 - 2.41) 1.19 (0.94 - 1.49) 1.19 (0.95 - 1.50) 1.26 (0.97 - 1.63) 

a Entries are n (%),Abbreviations: Hazard Ratio (HR), Confidence Interval (CI) 

Model 1: Age, Sex, Race (white versus non-white), Education, Body Mass Index (BMI), Smoking Status, Weekly Alcohol, Daily Caffeine, 

Antidepressants, and Benzodiazepines 

Model 2: Model 1 + Overall Arousal Index, Sleep Time with Saturated Oxygen Below 80%, Percent Stage N2 Sleep, Epworth Sleepiness Scale 

Score, SF-36 Mental Component Scale Standardized Score, SF-36 Mental Health Index Standardized Score, SF-36 Physical Component Scale 

Standardized Score, Congestive Heart Failure, Chronic Obstructive Pulmonary Disease, Type 2 Diabetes, Heart Attack, and Stroke  
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Table 15: Data Used for Meta-analysis  

Outcome / Study  
Sample 

Size 

Confidence 

Level 

Hazard Ratio 

(HR) 
Log of HR 

Standard 

Error 

95% CI  

Lower Limit 

95% CI  

Upper Limit 

All-cause Mortality        

MrOS All-cause 2,675 0.95 1.132695 0.124599749 0.024 1.0806351 1.1872419 

WSC All-cause 1,386 0.95 1.1710681 0.157916238 0.066962 1.0270326 1.3353037 

SHHS All-cause 5,550 0.95 1.1253946 0.11813373 0.024721 1.0721677 1.181264 

        

All-cause Mortality (Men)        

MrOS All-cause Men 2,675 0.95 1.132695 0.124599749 0.024 1.0806351 1.1872419 

WSC All-cause Men 753 0.95 1.094439 0.090241903 0.085866 0.92491593 1.2950331 

SHHS All-cause Men 2,640 0.95 1.1574158 0.146189761 0.0346 1.0815274 1.238629 

        

All-cause Mortality (Women)       

WSC All-cause Women 633 0.95 1.343441 0.295234233 0.114315 1.07377455 1.6808312 

SHHS All-cause Women 2,910 0.95 1.0943363 0.090148061 0.0360616 1.0196594 1.1744823 

        

Cardiovascular Mortality        

MrOS Cardiovascular 2,675 0.95 1.112 0.106160196 0.0408842 1.0263483 1.2047479 

WSC Cardiovascular 1,386 0.95 1.125265 0.118018563 0.129000 0.87395209 1.4488452 

SHHS Cardiovascular 4,810 0.95 1.0681594 0.06593698 0.048215 0.9718411 1.1740237 

Abbreviations: Hazard Ratio (HR), Confidence Interval (CI) 
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Figures 

Figure 1a-b: Dr. William C. Dement and Dr. Emmanuel Mignot 

Figure 1a. Dr. William C. Dement studying rapid eye movement (REM) sleep in cats. 

  

 

Figure 1b. Dr. Emmanuel Mignot holding his narcoleptic dog, Bear.  
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Figure 2: Example Polysomnographic Sleep Recording 

Two minute recording of rapid eye movement (REM) sleep with the green box highlighting a 30 second epoch of data. The channels are labeled 

on the left. LOC and ROC are abbreviations for the left and right electrooculogram. Chin represents the electromyogram measured under the chin. 

Brainwaves are labeled with their derivation (C3-A1, C4-A2, O1-A2, and O2-A1) and measure data from the central and occipital lobes. RAT and 

LAT are the right and left anterior tibialis leg muscle. ECG is the electrocardiogram. The R-R channel is displaying the time elapsed between two 

successive R-waves of the QRS signal on the electrocardiogram. Finally, SAO2 is the oxygen hemoglobin from a finger oximeter probe using a 3-

second averaging rate. The green box indicates a 30 second epoch. 
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Figure 3: Example Hypnogram for a Healthy Adult  

A graphical representation of sleep stages as a function of time. A typical night’s sleep consists of 

4-6 cycles of a NREM sleep period followed by REM sleep period. 
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Figure 4: Directed Acyclic Graph (DAG) 

A visual representation of causal assumptions used to help identify the presence of confounding. Given lack of information on casual relationships, 

this diagram was used to graphically organize and cluster available data in the MrOS cohort.  
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Figure 5: Flowchart Illustrating Participant Selection for Osteoporotic 

Fractures in Men Study (MrOS) Cohort 

 

    

 

  

Enrolled in MrOS Study
n = 5,994

Enrolled in sleep visit
n = 3,135

Reason not at sleep visit:
1,997 Declined
349 Died before Visit
40 Terminated

150 Ineligible
323 Recruitment goal met

No sleep data:
224 No usable sleep study
39 No sleep staging data Sleep data available

n = 2,872

Included in final dataset
n = 2,675

Reason not included in 
analysis:

197 No mortality data 



74 

Figure 6: Flowchart Illustrating Participant Selection for the Wisconsin 

Sleep Cohort (WSC) 
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Figure 7: Flowchart Illustrating Participant Selection for the Sleep 

Heart Health (SHHS) Cohort 
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Figure 8: Wisconsin Sleep Cohort (WSC) Demographic and Lifestyle 

Variables Compared to the Osteoporotic Fractures in Men Study 

(MrOS) Cohort by REM Quartile 

Mean value with standard error by REM quartile. The left column in orange contains data from 

WSC. The right column in black are values from MrOS. 
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Figure 9: Wisconsin Sleep Cohort (WSC) Sleep Variables Compared to 

the Osteoporotic Fractures in Men Study (MrOS) Cohort by REM 

Quartile 

Mean value with standard error by REM quartile. The left column in orange contains data from 

WSC. The right column in black are values from MrOS. 
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Figure 10: Unadjusted All-cause Mortality Kaplan-Meier Plots by 

Percent REM Quartile (Q1 through Q4, Top) and 15% REM Threshold 

(Bottom) in the MrOS Cohort 

The horizontal axis (x-axis) represents time in years, and the vertical axis (y-axis) shows the 

probability of surviving. The lines represent the different survival curve by group. A vertical drop 

in the curves indicates an event. A vertical tick mark means that a patient was censored at this 

time. 
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Figure 11: Unadjusted Cardiovascular Mortality Kaplan-Meier Plots by 

Percent REM Quartile (Q1 through Q4, Top) and 15% REM Threshold 

(Bottom) in the MrOS Cohort 

The horizontal axis (x-axis) represents time in years, and the vertical axis (y-axis) shows the 

probability of surviving. The lines represent the different survival curve by group. A vertical drop 

in the curves indicates an event. A vertical tick mark means that a patient was censored at this 

time. 
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Figure 12: Unadjusted Cancer Mortality Kaplan-Meier Plots by Percent 

REM Quartile (Q1 through Q4, Top) and 15% REM Threshold 

(Bottom) in the MrOS Cohort 

The horizontal axis (x-axis) represents time in years, and the vertical axis (y-axis) shows the 

probability of surviving. The lines represent the different survival curve by group. A vertical drop 

in the curves indicates an event. A vertical tick mark means that a patient was censored at this 

time. 
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Figure 13: Unadjusted Other Mortality Kaplan-Meier Plots by Percent 

REM Quartile (Q1 through Q4, Top) and 15% REM Threshold 

(Bottom) in the MrOS Cohort 

The horizontal axis (x-axis) represents time in years, and the vertical axis (y-axis) shows the 

probability of surviving. The lines represent the different survival curve by group. A vertical drop 

in the curves indicates an event. A vertical tick mark means that a patient was censored at this 

time. 
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Figure 14: Variable Importance Based On Random Survival Forest 

Classifier Evaluating All Sleep Stages as Predictors of Survival in the 

MrOS Study 

Percent REM was found to be the most important variable with a mean decrease in accuracy of 

0.058. This technique ranks the variables from most to least predictive in context of one another. 
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Figure 15: Conditional Inference Survival Tree Model evaluating all 

sleep stages as predictors of survival in the MrOS study 

All sleep stages were included as potential predictors of all-cause mortality using data from the 

MrOS study. Percent REM was selected as the first and second nodes with cut-points of 15.4% 

and 10.9%. Percent non-REM stage 1 (%N1) was the 5th node with a cut-point of 13.6%. 

  
.  
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Figure 16: Meta-analysis Results and Forest Plot of All-Cause Mortality 

The meta-analysis of the three cohorts yielded an overall hazard ratio of 1.13 (95% CI 1.10–1.17) 

for all-cause mortality with very little variation between trials (Chi² = 0.31, I² = 0%). The results 

are graphically displayed below in the Forest Plot. Table 15 contains all data used for the meta-

analysis.  

 

 

  

All-Cause Mortality 
IV, Fixed, 95% CI 
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Figure 17: Meta-analysis Results and Forest Plot of All-Cause Mortality 

in Men 

The meta-analysis of the three cohorts yielded an overall hazard ratio of 1.14 (95% CI 1.10–1.18) 

for all-cause mortality in men with very little variation between trials (Chi² = 0.48, I² = 0%). The 

results are graphically displayed below in the Forest Plot. Table 15 contains all data used for the 

meta-analysis.  
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Figure 18: Meta-analysis Results and Forest Plot of All-Cause Mortality 

in Women 

The meta-analysis of the three cohorts yielded an overall hazard ratio of 1.11 (95% CI 1.04–1.19) 

for all-cause mortality in women with some variation between trials (Chi² = 2.93, I² = 66%). The 

results are graphically displayed below in the Forest Plot. Table 15 contains all data used for the 

meta-analysis.  
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Figure 19: Meta-analysis Results and Forest Plot of Cardiovascular 

Mortality 

The meta-analysis of the three cohorts yielded an overall hazard ratio of 1.10 (95% CI 1.03–1.16) 

for cardiovascular related mortality with little variation between trials (Chi² = 0.45, I² = 0%). The 

results are graphically displayed below in the Forest Plot. Table 15 contains all data used for the 

meta-analysis.  
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